Identifying Users with Wearable Sensors based on Activity Patterns

Conference paper


Ehatisham-ul-Haq, M., Malik, M. N., Azam, M. A., Naeem, U., Khalid, A. and Ghazanfar, M. 2020. Identifying Users with Wearable Sensors based on Activity Patterns. The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2020). Madeira, Portugal 02 - 05 Nov 2020 Elsevier. https://doi.org/10.1016/j.procs.2020.10.005
AuthorsEhatisham-ul-Haq, M., Malik, M. N., Azam, M. A., Naeem, U., Khalid, A. and Ghazanfar, M.
TypeConference paper
Abstract

We live in a world where ubiquitous systems surround us in the form of automated homes, smart appliances and wearable devices. These ubiquitous systems not only enhance productivity but can also provide assistance given a variety of different scenarios. However, these systems are vulnerable to the risk of unauthorized access, hence the ability to authenticate the end-user seamlessly and securely is important. This paper presents an approach for user identification given the physical activity patterns captured using on-body wearable sensors, such as accelerometer, gyroscope, and magnetometer. Three machine learning classifiers have been used to discover the activity patterns of users given the data captured from wearable sensors. The recognition results prove that the proposed scheme can effectively recognize a user’s identity based on his/her daily living physical activity patterns.

Year2020
ConferenceThe 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2020)
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Publication dates
Online11 Nov 2020
Publication process dates
Accepted02 Aug 2020
Deposited16 Nov 2020
JournalProcedia Computer Science
Journal citation117, pp. 8-15
ISSN1877-0509
Digital Object Identifier (DOI)https://doi.org/10.1016/j.procs.2020.10.005
Copyright holder© 2020 The Authors
Permalink -

https://repository.uel.ac.uk/item/88v07

Download files


Publisher's version
1-s2.0-S1877050920322705-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 131
    total views
  • 82
    total downloads
  • 10
    views this month
  • 2
    downloads this month

Export as

Related outputs

Exploring the Ethical Implications of AI-Powered Personalization in Digital Marketing
Karami, A., Shemshaki, M. and Ghazanfar, M. 2024. Exploring the Ethical Implications of AI-Powered Personalization in Digital Marketing. Data Intelligence. p. In Press. https://doi.org/10.3724/2096-7004.di.2024.0055
A reinforcement learning recommender system using bi-clustering and Markov Decision Process
Iftikhar, A., Ghazanfar, M. A., Ayub, M., Alahmari, S. A., Qazi, N. and Wall, J. 2024. A reinforcement learning recommender system using bi-clustering and Markov Decision Process. Expert Systems with Applications. 237 (Art.), p. 121541. https://doi.org/10.1016/j.eswa.2023.121541
Shifting the Weight: Applications of AI in Olympic Weightlifting
Bolarinwa, D., Qazi, N. and Ghazanfar, M. 2023. Shifting the Weight: Applications of AI in Olympic Weightlifting. PRDC 2023: 28th IEEE Pacific Rim International Symposium on Dependable Computing. Singapore 24 - 27 Oct 2023 IEEE. https://doi.org/10.1109/PRDC59308.2023.00051
Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis. Machine Learning and Applications: An International Journal (MLAIJ). 10 (2/3), pp. 1-15. https://doi.org/10.5121/mlaij.2023.10301
Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment . 5th International Conference on Machine Learning & Applications (CMLA 2023). Sydney, Australia 17 - 18 Jun 2023 AIRCC Publishing Corporation.
Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark
Chaudhury, M., Karami, A. and Ghazanfar, M. A. 2022. Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark. Electronics. 11 (16), p. 2567. https://doi.org/10.3390/electronics11162567
A novel DeepMaskNet model for face mask detection and masked facial recognition
Ullah, N., Javed, A., Ghazanfar, M., Alsufyani, A. and Bourouis, S. 2022. A novel DeepMaskNet model for face mask detection and masked facial recognition. Journal of King Saud University - Computer and Information Sciences. 30 (10-B), pp. 9905-9914. https://doi.org/10.1016/j.jksuci.2021.12.017
Asset Criticality and Risk Prediction for an Effective Cyber Security Risk Management of Cyber Physical System
Kure, H. I., Islam, S., Ghazanfar, M., Raza, A. and Pasha, M. 2021. Asset Criticality and Risk Prediction for an Effective Cyber Security Risk Management of Cyber Physical System. Neural Computing and Applications. 34, p. 493–514. https://doi.org/10.1007/s00521-021-06400-0
Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)
Khalid, A., Lundqvist, K., Yates, A. and Ghazanfar, M. 2021. Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs). PLoS ONE. 16 (Art. e0245485). https://doi.org/10.1371/journal.pone.0245485
Stock market prediction using machine learning classifiers and social media, news
Khan, W., Ghazanfar, M., Azam, M. A., Karami, A., Alyoubi, K. H. and Alfakeeh, A. S. 2020. Stock market prediction using machine learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing. 13, pp. 3433-3456. https://doi.org/10.1007/s12652-020-01839-w
A novel centroids initialisation for K-means clustering in the presence of benign outliers
Karami, A., Ur Rehman, S. and Ghazanfar, M. 2020. A novel centroids initialisation for K-means clustering in the presence of benign outliers. International Journal of Data Analysis Techniques and Strategies. 12 (4), pp. 287-298. https://doi.org/10.1504/IJDATS.2020.111498
Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems
Ayub, M., Ghazanfar, M., Mehmood, Z., Saba, T., Alharbey, R., Munshi, A. M. and Alrige, M. A. 2019. Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems. PLoS ONE. 14 (Art. e0220129). https://doi.org/10.1371/journal.pone.0220129
Kernel Context Recommender System (KCR): A Scalable Context-Aware Recommender System Algorithm
Iqbal, Misbah, Ghazanfar, M., Sattar, Asma, Maqsood, Muazzam, Khan, Salabat, Mehmood, Irfan and Baik, Sung Wook 2019. Kernel Context Recommender System (KCR): A Scalable Context-Aware Recommender System Algorithm. IEEE Access. 7, pp. 24719-24737. https://doi.org/10.1109/ACCESS.2019.2897003
A Robust Regression-Based Stock Exchange Forecasting and Determination of Correlation between Stock Markets
Khan, U., Aadil, F., Ghazanfar, M., Khan, S., Metawa, N., Muhammad, K., Mehmood, I. and Nam, Y. 2018. A Robust Regression-Based Stock Exchange Forecasting and Determination of Correlation between Stock Markets. Sustainability. 10 (Art. 3702). https://doi.org/10.3390/su10103702