Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs)

Article


Khalid, A., Lundqvist, K., Yates, A. and Ghazanfar, M. 2021. Novel online Recommendation algorithm for Massive Open Online Courses (NoR-MOOCs). PLOS ONE. 16 (Art. e0245485). https://doi.org/10.1371/journal.pone.0245485
AuthorsKhalid, A., Lundqvist, K., Yates, A. and Ghazanfar, M.
Abstract

Massive Open Online Courses (MOOCs) have gained in popularity over the last few years. The space of online learning resources has been increasing exponentially and has created a problem of information overload. To overcome this problem, recommender systems that can recommend learning resources to users according to their interests have been proposed. MOOCs contain a huge amount of data with the quantity of data increasing as new learners register. Traditional recommendation techniques suffer from scalability, sparsity and cold start problems resulting in poor quality recommendations. Furthermore, they cannot accommodate the incremental update of the model with the arrival of new data making them unsuitable for MOOCs dynamic environment. From this line of research, we propose a novel online recommender system, namely NoR-MOOCs, that is accurate, scales well with the data and moreover overcomes previously recorded problems with recommender systems. Through extensive experiments conducted over the COCO data-set, we have shown empirically that NoR-MOOCs significantly outperforms traditional KMeans and Collaborative Filtering algorithms in terms of predictive and classification accuracy metrics.

JournalPLOS ONE
Journal citation16 (Art. e0245485)
ISSN1932-6203
Year2021
PublisherPublic Library of Science
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1371/journal.pone.0245485
Publication dates
Online22 Jan 2021
Publication process dates
Accepted02 Jan 2021
Deposited26 Jan 2021
Copyright holder© 2021 The Authors
Permalink -

https://repository.uel.ac.uk/item/88y39

Download files

Publisher's version
journal.pone.0245485.pdf
License: CC BY 4.0
File access level: Anyone

  • 9
    total views
  • 8
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Identifying Users with Wearable Sensors based on Activity Patterns
Ehatisham-ul-Haq, M., Malik, M. N., Azam, M. A., Naeem, U., Khalid, A. and Ghazanfar, M. 2020. Identifying Users with Wearable Sensors based on Activity Patterns. The 11th International Conference on Emerging Ubiquitous Systems and Pervasive Networks (EUSPN 2020). Madeira, Portugal 02 - 05 Nov 2020 Elsevier. https://doi.org/10.1016/j.procs.2020.10.005
Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems
Ayub, M., Ghazanfar, M., Mehmood, Z., Saba, T., Alharbey, R., Munshi, A. M. and Alrige, M. A. 2019. Modeling user rating preference behavior to improve the performance of the collaborative filtering based recommender systems. PLOS ONE. 14 (Art. e0220129). https://doi.org/10.1371/journal.pone.0220129
Kernel Context Recommender System (KCR): A Scalable Context-Aware Recommender System Algorithm
Iqbal, Misbah, Ghazanfar, M., Sattar, Asma, Maqsood, Muazzam, Khan, Salabat, Mehmood, Irfan and Baik, Sung Wook 2019. Kernel Context Recommender System (KCR): A Scalable Context-Aware Recommender System Algorithm. IEEE Access. 7, pp. 24719-24737. https://doi.org/10.1109/ACCESS.2019.2897003
A Robust Regression-Based Stock Exchange Forecasting and Determination of Correlation between Stock Markets
Khan, U., Aadil, F., Ghazanfar, M., Khan, S., Metawa, N., Muhammad, K., Mehmood, I. and Nam, Y. 2018. A Robust Regression-Based Stock Exchange Forecasting and Determination of Correlation between Stock Markets. Sustainability. 10 (Art. 3702). https://doi.org/10.3390/su10103702