Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials

Article


Ayati, B., Newport, D., Wong, H. and Cheeseman, C. 2022. Low-carbon cements: Potential for low-grade calcined clays to form supplementary cementitious materials. Cleaner Materials. 5 (Art. 100099). https://doi.org/10.1016/j.clema.2022.100099
AuthorsAyati, B., Newport, D., Wong, H. and Cheeseman, C.
Abstract

The use of low-carbon supplementary cementitious materials (SCM), such as calcined clays, to replace cement clinker has been recognized by the Cement Industry to achieve reductions in greenhouse gas emissions. This paper investigates eight low-grade clays, with <20% kaolinite, obtained from different geological formations, that have been calcined to produce potential SCMs. The clays were characterised before and after calcining at 750, 800, 850 and 900 °C, and the mineralogical changes and amorphous phase contents determined. The pozzolanic activity and the strength activity index of the different calcined clays were evaluated. The results show that calcined clays from the Oxford and Ampthill geological formations in the UK can produce SCMs with pozzolanic activity higher than conventional SCMs such as PFA. These clays were rich in illite and smectite and produced ∼60% amorphous phase when calcined at 850 °C. Mortars produced using calcined clays had higher compressive strengths than mortars containing pulverised fuel ash and achieved ∼90% of the compressive strength of 100% Portland cement mortar samples at 28 days. The research demonstrates that low-grade clay resources can be calcined to produce SCMs and that these can be used to form cementitious materials with reduced total associated CO₂ emissions.

KeywordsCalcined clays; Pozzolans; Low-carbon cement; Supplementary cementitious materials
JournalCleaner Materials
Journal citation5 (Art. 100099)
ISSN2772-3976
Year2022
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.clema.2022.100099
Publication dates
Online31 May 2022
Publication process dates
Accepted28 May 2022
Deposited07 Jun 2022
FunderTarmac Cement Ltd.
Copyright holder© 2022 The Authors
Permalink -

https://repository.uel.ac.uk/item/8qv2q

Download files


Publisher's version
1-s2.0-S2772397622000594-main.pdf
License: CC BY-NC-ND 4.0
File access level: Anyone

  • 17
    total views
  • 4
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Microplastic abundance in the Thames River during the New Year period
Devereux, R., Westhead, E., Jayaratne, R. and Newport, D. 2022. Microplastic abundance in the Thames River during the New Year period. Marine Pollution Bulletin. 177 (Art. 113534). https://doi.org/10.1016/j.marpolbul.2022.113534
Influence of waste glass in the foaming process of open cell porous ceramic as filtration media for industrial wastewater
Shishkin, A., Aguedal, H., Goel, G., Peculevica, J., Newport, D. and Ozolins, J. 2020. Influence of waste glass in the foaming process of open cell porous ceramic as filtration media for industrial wastewater. Journal of Cleaner Production. 282 (Art. 124546). https://doi.org/10.1016/j.jclepro.2020.124546
Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles in London
Vandergert, P., Jordan, S., Newport, D. and Sandland, S. 2020. Impact of Public Charging Infrastructure on the Adoption of Electric Vehicles in London. International Conference of Sustainable Ecological Engineering Design for Society (SEEDS) 2019. University of Suffolk, Ipswich, UK 11 - 12 Sep 2019 Springer International Publishing. pp. 327-333 https://doi.org/10.1007/978-3-030-44381-8_25
The Influence of Urban Green Systems on the Urban Heat Island Effect in London
Taher, H., Elsharkawy, H. and Newport, D. 2019. The Influence of Urban Green Systems on the Urban Heat Island Effect in London. Sustainable Built Environment Conference 2019 Wales: Policy to Practice. Cardiff, Wales 24 - 25 Sep 2019 IOP Publishing Ltd. https://doi.org/10.1088/1755-1315/329/1/012046
Water attenuation performance of the Museum of London green roof
Connop, S., Clough, J., Borland, T. and Newport, D. 2015. Water attenuation performance of the Museum of London green roof. University of East London.
Manufacture and performance of lightweight aggregate from waste drill cuttings
Ayati, B., Molineux, C., Newport, D. and Cheeseman, Christopher 2018. Manufacture and performance of lightweight aggregate from waste drill cuttings. Journal of Cleaner Production. 208, pp. 252-260. https://doi.org/10.1016/j.jclepro.2018.10.134
Renfrew Close Rain Gardens – Year two monitoring and project evaluation report, May 2017.
Clough, J. and Newport, D. 2017. Renfrew Close Rain Gardens – Year two monitoring and project evaluation report, May 2017. University of East London.
Development of a Building Information Modelling (BIM)-Based Real-Time Data Integration System Using a Building Management System (BMS)
Khalid, Muhammad Umar, Bashir, M. and Newport, D. 2017. Development of a Building Information Modelling (BIM)-Based Real-Time Data Integration System Using a Building Management System (BMS). in: Building Information Modelling, Building Performance, Design and Smart Construction Springer International Publishing. pp. 93-104
Urban transformation with TURAS open innovations; opportunities for transitioning through transdisciplinarity
Collier, Marcus J, Connop, S., Foley, Karen, Nedović-Budić, Zorica, Newport, D., Corcoran, Aoife, Crowe, Philip, Dunne, Louise, de Moel, Hans, Kampelmann, Stephan, McQuaid, Siobhán, Schwarz von Raumer, Hans-Georg, Slaev, Aleksander, Stumpp, Eva-Maria, Van den Abeele, Patrick and Vandergert, Paula 2017. Urban transformation with TURAS open innovations; opportunities for transitioning through transdisciplinarity. Current Opinion in Environmental Sustainability. 22, pp. 57-62. https://doi.org/10.1016/j.cosust.2017.04.005
Use of clay in the manufacture of lightweight aggregate
Ayati, B., Ferrándiz-Mas, Veronica, Newport, D. and Cheeseman, Christopher 2017. Use of clay in the manufacture of lightweight aggregate. Construction and Building Materials. 162, pp. 124-131. https://doi.org/10.1016/j.conbuildmat.2017.12.018
Using soil microbial inoculations to enhance substrate performance on extensive green roofs
Molineux, C., Gange, Alan C. and Newport, D. 2016. Using soil microbial inoculations to enhance substrate performance on extensive green roofs. Science of the Total Environment. 580, pp. 846-856. https://doi.org/10.1016/j.scitotenv.2016.12.031
Production of Clay Coated Lightweight Fill Materials From Air Pollution Control Residues (APCR)
Ayati, Bamdad, Shishkin, Andrei and Newport, D. 2016. Production of Clay Coated Lightweight Fill Materials From Air Pollution Control Residues (APCR). in: International Sustainable Ecological Engineering Design for Society (SEEDS) Conference 2016 Proceedings LSIPublishing. pp. 253-263
Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure
Connop, S., Vandergert, P., Eisenberg, Bernd, Collier, Marcus J., Nash, Caroline, Clough, Jack and Newport, D. 2016. Renaturing cities using a regionally-focused biodiversity-led multifunctional benefits approach to urban green infrastructure. Environmental Science & Policy. 62 (Aug.), pp. 99-111. https://doi.org/10.1016/j.envsci.2016.01.013
Blending adaptive governance and institutional theory to explore urban resilience and sustainability strategies in the Rome Metropolitan Area, Italy
Vandergert, P., Collier, Marcus, Kamplemann, Stephan and Newport, D. 2015. Blending adaptive governance and institutional theory to explore urban resilience and sustainability strategies in the Rome Metropolitan Area, Italy. International Journal of Urban Sustainable Development.
Quasi steady state and dynamic hygrothermal performance of fibrous Hemp and Stone Wool insulations: Two innovative laboratory based investigations
Latif, Eshrar, Tucker, Simon, Ciupala, A., Wijeyesekera, Devapriya Chitral, Newport, D. and Pruteanu, Marian 2016. Quasi steady state and dynamic hygrothermal performance of fibrous Hemp and Stone Wool insulations: Two innovative laboratory based investigations. Building and Environment. 95, pp. 391-404. https://doi.org/10.1016/j.buildenv.2015.10.006
Hygric properties of hemp bio-insulations with differing compositions
Latif, Eshrar, Tucker, Simon, Ciupala, A., Wijeyesekera, Devapriya Chitral and Newport, D. 2014. Hygric properties of hemp bio-insulations with differing compositions. Construction and Building Materials. 66, pp. 702-711.
Using recycled aggregates in green roof substrates for plant diversity
Molineux, C., Gange, Alan C., Connop, S. and Newport, D. 2015. Using recycled aggregates in green roof substrates for plant diversity. Ecological Engineering. 82 (Sep.), pp. 596-604. https://doi.org/10.1016/j.ecoleng.2015.05.036
Initial insights on the biodiversity potential of biosolar roofs: A London Olympic Park green roof case study
Nash, C, Clough, J., Gedge, D, Lindsay, R., Newport, D., Ciupala, A. and Connop, S. 2015. Initial insights on the biodiversity potential of biosolar roofs: A London Olympic Park green roof case study. Israel Journal of Ecology and Evolution; special issue "Integrating ecology into green roof research". 62 (1-2), pp. 74-87. https://doi.org/10.1080/15659801.2015.1045791
Hygrothermal performance of wood-hemp insulation in timber frame wall panels with and without a vapour barrier
Latif, Eshrar, Ciupala, A., Tucker, Simon, Wijeyesekera, Devapriya Chitral and Newport, D. 2015. Hygrothermal performance of wood-hemp insulation in timber frame wall panels with and without a vapour barrier. Building and Environment. 92, pp. 122-134.
Are microbial communities in green roof substrates comparable to those in post-industrial sites?—a preliminary study.
Molineux, C., Gange, Alan, Connop, S. and Newport, D. 2015. Are microbial communities in green roof substrates comparable to those in post-industrial sites?—a preliminary study. Urban Ecosystems. 18 (4), pp. 1245-1260. https://doi.org/10.1007/s11252-015-0450-z
Bauxite residue (Red mud) as a pulverised fuel ash substitute in the manufacture of lightweight aggregate
Molineux, C., Newport, D., Ayati, B., Wang, C., Connop, S. and Green, J. E. 2015. Bauxite residue (Red mud) as a pulverised fuel ash substitute in the manufacture of lightweight aggregate. Journal of Cleaner Production. 112 (1), pp. 401-408. https://doi.org/10.1016/j.jclepro.2015.09.024
TURAS green roof design guidelines: Maximising ecosystem service provision through regional design for biodiversity
Connop, S., Gedge, Dusty, Kadas, Gyongyver, Nash, Caroline, Owczareck, Kinga and Newport, D. 2013. TURAS green roof design guidelines: Maximising ecosystem service provision through regional design for biodiversity. London University of East London.
Transitioning to resilience and sustainability in urban communities
Collier, Marcus J., Nedović-Budić, Zorica, Aerts, Jeroen, Connop, S., Foley, Dermot, Foley, Karen, Newport, D., McQuaid, Siobhán, Slaev, Aleksander and Verburg, Peter 2013. Transitioning to resilience and sustainability in urban communities. Cities.
Thermal conductivity of building materials: an overview of its determination
Latif, E, Rhydwen, G R, Wijeyesekera, D.Chitral, Tucker, Simon, Ciupala, A. and Newport, D. 2011. Thermal conductivity of building materials: an overview of its determination. Advances in Computing and Technology. University of East London, London Jan 2011 London University of East London, School of Architecture Computing and Engineering.
Potential for research on hemp insulation in the UK construction sector
Latif, E., Wijeyesekera, D.Chitral, Newport, D. and Tucker, Simon 2010. Potential for research on hemp insulation in the UK construction sector. Proceedings of Advances in Computing and Technology, (AC&T) The School of Computing and Technology 5th Annual Conference, University of East London, pp. 143-150