Dynamics of brain connectivity after stroke

Article


Desowska, A. and Turner, D. 2019. Dynamics of brain connectivity after stroke. Reviews in the Neurosciences. 30 (6), p. 605–623. https://doi.org/10.1515/revneuro-2018-0082
AuthorsDesowska, A. and Turner, D.
Abstract

PURPOSE: Recovery from a stroke is a dynamic time-dependent process with the central nervous system reorganizing to accommodate for the impact of the injury. The purpose of this paper is to review recent longitudinal studies of changes in brain connectivity after stroke.
METHOD: A systematic review of research papers reporting functional or effective connectivity at two or more time points in stroke patients.
RESULTS: Stroke leads to an early reduction of connectivity in the motor network. With recovery time, the connectivity increases and can reach the same levels as in healthy participants. The increase in connectivity is correlated with functional motor gains. A new, more randomized pattern of connectivity may then emerge in the longer term. In some instances, a pattern of increased connectivity even higher than in healthy controls can be observed, related either to a specific time point or to a specific neural structure. Rehabilitation interventions can help improve connectivity between specific regions.
CONCLUSIONS: Motor network connectivity undergoes reorganization during recovery from a stroke and can be related to behavioural recovery. Detailed analysis of changes in connectivity pattern may enable a better understanding of adaptation to a stroke and how compensatory mechanisms in the brain may be supported by rehabilitation.

JournalReviews in the Neurosciences
Journal citation30 (6), p. 605–623
ISSN0334-1763
Year2019
PublisherDe Gruyter
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1515/revneuro-2018-0082
Web address (URL)https://doi.org/10.1515/revneuro-2018-0082
Publication dates
Online15 Feb 2019
Publication process dates
Deposited11 Feb 2019
Accepted18 Nov 2018
Accepted18 Nov 2018
Copyright holder© 2019 Walter de Gruyter GmbH
Permalink -

https://repository.uel.ac.uk/item/844qq

Download files


Accepted author manuscript
7834.pdf
License: All rights reserved
File access level: Anyone

  • 327
    total views
  • 901
    total downloads
  • 7
    views this month
  • 9
    downloads this month

Export as

Related outputs

Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial
Fernandez-Garcia, C., Ternent, L., Homer, T. M., Rodgers, H., Bosomworth, H., Shaw, L., Aird, L., Andole, S., Cohen, D., Dawson, J., Finch, T., Ford, G., Francis, R., Hogg, S., Hughes, N., Krebs, H. I., Price, C., Turner, D., Van Wijck, F., Wilkes, S., Wilson, N. and Vale, L. 2021. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open. 11 (Art. e042081). https://doi.org/10.1136/bmjopen-2020-042081
Motor adaptation and internal model formation in a robot-mediated forcefield
Taga, M., Curci, A., Pizzamiglio, S., Lacal, I., Turner, D. and Fu, C. 2021. Motor adaptation and internal model formation in a robot-mediated forcefield. Psychoradiology. 1 (2), p. 73–87. https://doi.org/10.1093/psyrad/kkab007
Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Finch, T., Alvarado, N., Ternent, L., Fernandez-Garcia, C., Aird, L., Andole, S., Cohen, D. L., Dawson, J., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Turner, D. L., Vale, L., Wilkes, S. and Shaw, L. 2020. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Health Technology Assessment. 24 (54). https://doi.org/10.3310/hta24540
Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement
Bosomworth, H., Rodgers, H., Shaw, L., Smith, L., Aird, L., Howe, D., Wilson, N., Alvarado, N., Andole, S., Cohen, D., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Vale, L., Turner, D., Wilkes, S., Krebs, H. I. and van Wijck, F. 2020. Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement. Clinical Rehabilitation. 35 (1), pp. 119-134. https://doi.org/10.1177/0269215520953833
Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study
Mehler, D. M. A., Williams, A. N., Whittaker, J. R., Krause, F., Lührs, M., Kunas, S., Wise, R. G., Shetty H. G. M., Turner, D. and Linden, D. E. J. 2020. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Frontiers in Human Neuroscience. 14 (Art. 226). https://doi.org/10.3389/fnhum.2020.00226
Are There Brain-Based Predictors of the Ability to Learn a New Skill in Healthy Ageing and Can They Help in the Design of Effective Therapy after Stroke?
Desowska, A. 2019. Are There Brain-Based Predictors of the Ability to Learn a New Skill in Healthy Ageing and Can They Help in the Design of Effective Therapy after Stroke? PhD Thesis University of East London School of Health, Sport and Bioscience https://doi.org/10.15123/uel.8887v
Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Turner, D., Vale, L., Wilkes, S. and Shaw, L. 2019. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 394 (10192), pp. 51-62. https://doi.org/10.1016/S0140-6736(19)31055-4
The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
Mehler, David M.A., Williams, Angharad N., Krause, Florian, Lührs, Michael, Wise, Richard G., Turner, D., Linden, David E.J. and Whittaker, Joseph R. 2018. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. NeuroImage. 184, pp. 36-44. https://doi.org/10.1016/j.neuroimage.2018.09.007
Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields
Faiman, Irene, Pizzamiglio, S. and Turner, D. 2018. Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields. NeuroImage. 174, pp. 494-503. https://doi.org/10.1016/j.neuroimage.2018.03.054
Neural Predictors of Gait Stability When Walking Freely in the Real-World.
Pizzamiglio, S., Abdalla, H., Naeem, U. and Turner, D. 2018. Neural Predictors of Gait Stability When Walking Freely in the Real-World. Journal of NeuroEngineering and Rehabilitation. 15 (11). https://doi.org/10.1186/s12984-018-0357-z
Advanced technology for gait rehabilitation --- An overview
Mikolajczyk, Tadeusz, Ciobanu, Ileana, Badea, Joana, Iliescu, Alina, Pizzamiglio, S., Schauer, Thomas, See, Thomas, Seicu, Lucien, Turner, D. and Berteanu, Mihai 2018. Advanced technology for gait rehabilitation --- An overview. Advances in Mechanical Engineering. 10 (7), pp. 1-19. https://doi.org/10.1177/1687814018783627
Neural correlates of single- and dual-task walking in the real world
Pizzamiglio, Sara, Naeem, U., Abdalla, H. and Turner, D. 2017. Neural correlates of single- and dual-task walking in the real world. Frontiers in Human Neuroscience. 11, p. Art 460. https://doi.org/10.3389/fnhum.2017.00460
Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial
Rodgers, Helen, Shaw, Lisa, Bosomworth, Helen, Aird, Lydia, Alvarado, Natasha, Andole, Sreeman, Cohen, David L., Dawson, Jesse, Eyre, Janet, Finch, Tracy, Ford, Gary A., Hislop, Jennifer, Hogg, Steven, Howel, Denise, Hughes, Niall, Krebs, Hermano Igo, Price, Christopher, Rochester, Lynn, Stamp, Elaine, Ternent, Laura, Turner, D., Vale, Luke, Warburton, Elizabeth, van Wijck, Frederike and Wilkes, Scott 2017. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial. Trials. 18, p. Art. 340. https://doi.org/10.1186/s13063-017-2083-4
High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation
Pizzamiglio, Sara, De Lillo, Martina, Naeem, U., Abdalla, Hassan and Turner, D. 2017. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation. Frontiers in Physiology. 7 (668), pp. 1-14. https://doi.org/10.3389/fphys.2016.00668
Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training
Pizzamiglio, S., Desowska, A., Mohajer Shojaii, P., Taga, M. and Turner, D. 2017. Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training. NeuroRehabilitation. 41 (1), pp. 17-29. https://doi.org/10.3233/NRE-171453
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96. https://doi.org/10.1016/j.procs.2017.08.297
Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
Linden, David E.J. and Turner, D. 2016. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Current Opinion in Neurology. 29 (4), pp. 412-418. https://doi.org/10.1097/WCO.0000000000000340
Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial
Subramanian, Leena, Busse-Morris, Monica, Brosnan, Meadhbh, Turner, D., Morris, Huw R. and Linden, David E. J. 2016. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial. Frontiers in Behavioural Neuroscience. 10, p. Art.111. https://doi.org/10.3389/fnbeh.2016.00111
Spinal plasticity in robot-mediated therapy for the lower limbs
Stevenson, Andrew JT, Mrachacz-Kersting, Natalie, van Asseldonk, Edwin, Turner, D. and Spaich, Erika G. 2015. Spinal plasticity in robot-mediated therapy for the lower limbs. Journal of NeuroEngineering and Rehabilitation. 12 (1).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex
Hunter, Timothy, Sacco, Paul, Nitsche, Michael A. and Turner, D. 2009. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. Journal of Physiology. 587 (12).