Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT

Article


Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Finch, T., Alvarado, N., Ternent, L., Fernandez-Garcia, C., Aird, L., Andole, S., Cohen, D. L., Dawson, J., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Turner, D. L., Vale, L., Wilkes, S. and Shaw, L. 2020. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Health Technology Assessment. 24 (54). https://doi.org/10.3310/hta24540
AuthorsRodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Finch, T., Alvarado, N., Ternent, L., Fernandez-Garcia, C., Aird, L., Andole, S., Cohen, D. L., Dawson, J., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Turner, D. L., Vale, L., Wilkes, S. and Shaw, L.
Abstract

Background

Loss of arm function is common after stroke. Robot-assisted training may improve arm outcomes.

Objective

The objectives were to determine the clinical effectiveness and cost-effectiveness of robot-assisted training, compared with an enhanced upper limb therapy programme and with usual care.

Design

This was a pragmatic, observer-blind, multicentre randomised controlled trial with embedded health economic and process evaluations.

Setting

The trial was set in four NHS trial centres.
Participants

Patients with moderate or severe upper limb functional limitation, between 1 week and 5 years following first stroke, were recruited.

Interventions

Robot-assisted training using the Massachusetts Institute of Technology-Manus robotic gym system (InMotion commercial version, Interactive Motion Technologies, Inc., Watertown, MA, USA), an enhanced upper limb therapy programme comprising repetitive functional task practice, and usual care.

Main outcome measures

The primary outcome was upper limb functional recovery ‘success’ (assessed using the Action Research Arm Test) at 3 months. Secondary outcomes at 3 and 6 months were the Action Research Arm Test results, upper limb impairment (measured using the Fugl-Meyer Assessment), activities of daily living (measured using the Barthel Activities of Daily Living Index), quality of life (measured using the Stroke Impact Scale), resource use costs and quality-adjusted life-years.

Results

A total of 770 participants were randomised (robot-assisted training, n = 257; enhanced upper limb therapy, n = 259; usual care, n = 254). Upper limb functional recovery ‘success’ was achieved in the robot-assisted training [103/232 (44%)], enhanced upper limb therapy [118/234 (50%)] and usual care groups [85/203 (42%)]. These differences were not statistically significant; the adjusted odds ratios were as follows: robot-assisted training versus usual care, 1.2 (98.33% confidence interval 0.7 to 2.0); enhanced upper limb therapy versus usual care, 1.5 (98.33% confidence interval 0.9 to 2.5); and robot-assisted training versus enhanced upper limb therapy, 0.8 (98.33% confidence interval 0.5 to 1.3). The robot-assisted training group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale) than the usual care group at 3 and 6 months. The enhanced upper limb therapy group had less upper limb impairment (as measured by the Fugl-Meyer Assessment motor subscale), better mobility (as measured by the Stroke Impact Scale mobility domain) and better performance in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the usual care group, at 3 months. The robot-assisted training group performed less well in activities of daily living (as measured by the Stroke Impact Scale activities of daily living domain) than the enhanced upper limb therapy group at 3 months. No other differences were clinically important and statistically significant. Participants found the robot-assisted training and the enhanced upper limb therapy group programmes acceptable. Neither intervention, as provided in this trial, was cost-effective at current National Institute for Health and Care Excellence willingness-to-pay thresholds for a quality-adjusted life-year.

Conclusions

Robot-assisted training did not improve upper limb function compared with usual care. Although robot-assisted training improved upper limb impairment, this did not translate into improvements in other outcomes. Enhanced upper limb therapy resulted in potentially important improvements on upper limb impairment, in performance of activities of daily living, and in mobility. Neither intervention was cost-effective.

Future work

Further research is needed to find ways to translate the improvements in upper limb impairment seen with robot-assisted training into improvements in upper limb function and activities of daily living. Innovations to make rehabilitation programmes more cost-effective are required.

Limitations

Pragmatic inclusion criteria led to the recruitment of some participants with little prospect of recovery. The attrition rate was higher in the usual care group than in the robot-assisted training or enhanced upper limb therapy groups, and differential attrition is a potential source of bias. Obtaining accurate information about the usual care that participants were receiving was a challenge.

Trial registration

Current Controlled Trials ISRCTN69371850.

Funding

This project was funded by the National Institute for Health Research (NIHR) Health Technology Assessment programme and will be published in full in Health Technology Assessment; Vol. 24, No. 54. See the NIHR Journals Library website for further project information.

JournalHealth Technology Assessment
Journal citation24 (54)
ISSN1366-5278
Year2020
PublisherNIHR Journals Library
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.3310/hta24540
Publication dates
Online02 Nov 2020
Publication process dates
Deposited17 Nov 2020
FunderNational Institute for Health Research Health Technology Assessment programme
Copyright holder© Queen’s Printer and Controller of HMSO 2020
Copyright informationThis work was produced by Rodgers et al. under the terms of a commissioning contract issued by the Secretary of State for Health and Social Care. This issue may be freely reproduced for the purposes of private research and study and extracts (or indeed, the full report) may be included in professional journals provided that suitable acknowledgement is made and the reproduction is not associated with any form of advertising. Applications for commercial reproduction should be addressed to: NIHR Journals Library, National Institute for Health Research, Evaluation, Trials and Studies Coordinating Centre, Alpha House, University of Southampton Science Park, Southampton SO16 7NS, UK.
Permalink -

https://repository.uel.ac.uk/item/88v14

Download files


Publisher's version
3034508.pdf
License: Non-Commercial Government Licence 2.0
File access level: Anyone

  • 161
    total views
  • 215
    total downloads
  • 4
    views this month
  • 10
    downloads this month

Export as

Related outputs

Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial
Fernandez-Garcia, C., Ternent, L., Homer, T. M., Rodgers, H., Bosomworth, H., Shaw, L., Aird, L., Andole, S., Cohen, D., Dawson, J., Finch, T., Ford, G., Francis, R., Hogg, S., Hughes, N., Krebs, H. I., Price, C., Turner, D., Van Wijck, F., Wilkes, S., Wilson, N. and Vale, L. 2021. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open. 11 (Art. e042081). https://doi.org/10.1136/bmjopen-2020-042081
Motor adaptation and internal model formation in a robot-mediated forcefield
Taga, M., Curci, A., Pizzamiglio, S., Lacal, I., Turner, D. and Fu, C. 2021. Motor adaptation and internal model formation in a robot-mediated forcefield. Psychoradiology. 1 (2), p. 73–87. https://doi.org/10.1093/psyrad/kkab007
Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement
Bosomworth, H., Rodgers, H., Shaw, L., Smith, L., Aird, L., Howe, D., Wilson, N., Alvarado, N., Andole, S., Cohen, D., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Vale, L., Turner, D., Wilkes, S., Krebs, H. I. and van Wijck, F. 2020. Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement. Clinical Rehabilitation. 35 (1), pp. 119-134. https://doi.org/10.1177/0269215520953833
Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study
Mehler, D. M. A., Williams, A. N., Whittaker, J. R., Krause, F., Lührs, M., Kunas, S., Wise, R. G., Shetty H. G. M., Turner, D. and Linden, D. E. J. 2020. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Frontiers in Human Neuroscience. 14 (Art. 226). https://doi.org/10.3389/fnhum.2020.00226
Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Turner, D., Vale, L., Wilkes, S. and Shaw, L. 2019. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 394 (10192), pp. 51-62. https://doi.org/10.1016/S0140-6736(19)31055-4
Dynamics of brain connectivity after stroke
Desowska, A. and Turner, D. 2019. Dynamics of brain connectivity after stroke. Reviews in the Neurosciences. 30 (6), p. 605–623. https://doi.org/10.1515/revneuro-2018-0082
The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
Mehler, David M.A., Williams, Angharad N., Krause, Florian, Lührs, Michael, Wise, Richard G., Turner, D., Linden, David E.J. and Whittaker, Joseph R. 2018. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. NeuroImage. 184, pp. 36-44. https://doi.org/10.1016/j.neuroimage.2018.09.007
Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields
Faiman, Irene, Pizzamiglio, S. and Turner, D. 2018. Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields. NeuroImage. 174, pp. 494-503. https://doi.org/10.1016/j.neuroimage.2018.03.054
Neural Predictors of Gait Stability When Walking Freely in the Real-World.
Pizzamiglio, S., Abdalla, H., Naeem, U. and Turner, D. 2018. Neural Predictors of Gait Stability When Walking Freely in the Real-World. Journal of NeuroEngineering and Rehabilitation. 15 (11). https://doi.org/10.1186/s12984-018-0357-z
Advanced technology for gait rehabilitation --- An overview
Mikolajczyk, Tadeusz, Ciobanu, Ileana, Badea, Joana, Iliescu, Alina, Pizzamiglio, S., Schauer, Thomas, See, Thomas, Seicu, Lucien, Turner, D. and Berteanu, Mihai 2018. Advanced technology for gait rehabilitation --- An overview. Advances in Mechanical Engineering. 10 (7), pp. 1-19. https://doi.org/10.1177/1687814018783627
Neural correlates of single- and dual-task walking in the real world
Pizzamiglio, Sara, Naeem, U., Abdalla, H. and Turner, D. 2017. Neural correlates of single- and dual-task walking in the real world. Frontiers in Human Neuroscience. 11, p. Art 460. https://doi.org/10.3389/fnhum.2017.00460
Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial
Rodgers, Helen, Shaw, Lisa, Bosomworth, Helen, Aird, Lydia, Alvarado, Natasha, Andole, Sreeman, Cohen, David L., Dawson, Jesse, Eyre, Janet, Finch, Tracy, Ford, Gary A., Hislop, Jennifer, Hogg, Steven, Howel, Denise, Hughes, Niall, Krebs, Hermano Igo, Price, Christopher, Rochester, Lynn, Stamp, Elaine, Ternent, Laura, Turner, D., Vale, Luke, Warburton, Elizabeth, van Wijck, Frederike and Wilkes, Scott 2017. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial. Trials. 18, p. Art. 340. https://doi.org/10.1186/s13063-017-2083-4
High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation
Pizzamiglio, Sara, De Lillo, Martina, Naeem, U., Abdalla, Hassan and Turner, D. 2017. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation. Frontiers in Physiology. 7 (668), pp. 1-14. https://doi.org/10.3389/fphys.2016.00668
Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training
Pizzamiglio, S., Desowska, A., Mohajer Shojaii, P., Taga, M. and Turner, D. 2017. Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training. NeuroRehabilitation. 41 (1), pp. 17-29. https://doi.org/10.3233/NRE-171453
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96. https://doi.org/10.1016/j.procs.2017.08.297
Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
Linden, David E.J. and Turner, D. 2016. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Current Opinion in Neurology. 29 (4), pp. 412-418. https://doi.org/10.1097/WCO.0000000000000340
Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial
Subramanian, Leena, Busse-Morris, Monica, Brosnan, Meadhbh, Turner, D., Morris, Huw R. and Linden, David E. J. 2016. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial. Frontiers in Behavioural Neuroscience. 10, p. Art.111. https://doi.org/10.3389/fnbeh.2016.00111
Spinal plasticity in robot-mediated therapy for the lower limbs
Stevenson, Andrew JT, Mrachacz-Kersting, Natalie, van Asseldonk, Edwin, Turner, D. and Spaich, Erika G. 2015. Spinal plasticity in robot-mediated therapy for the lower limbs. Journal of NeuroEngineering and Rehabilitation. 12 (1).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex
Hunter, Timothy, Sacco, Paul, Nitsche, Michael A. and Turner, D. 2009. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. Journal of Physiology. 587 (12).