Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement

Article


Bosomworth, H., Rodgers, H., Shaw, L., Smith, L., Aird, L., Howe, D., Wilson, N., Alvarado, N., Andole, S., Cohen, D., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Vale, L., Turner, D., Wilkes, S., Krebs, H. I. and van Wijck, F. 2020. Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement. Clinical Rehabilitation. 35 (1), pp. 119-134. https://doi.org/10.1177/0269215520953833
AuthorsBosomworth, H., Rodgers, H., Shaw, L., Smith, L., Aird, L., Howe, D., Wilson, N., Alvarado, N., Andole, S., Cohen, D., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Vale, L., Turner, D., Wilkes, S., Krebs, H. I. and van Wijck, F.
Abstract

Objective:

To report the fidelity of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after stroke (RATULS) randomized controlled trial, the types of goals selected and the proportion of goals achieved.

Design:

Descriptive analysis of data on fidelity, goal selection and achievement from an intervention group within a randomized controlled trial.

Setting:

Out-patient stroke rehabilitation within four UK NHS centres.

Subjects:

259 participants with moderate-severe upper limb activity limitation (Action Research Arm Test 0–39) between one week and five years post first stroke.

Intervention:

The enhanced upper limb therapy programme aimed to provide 36 one-hour sessions, including 45 minutes of face-to-face therapy focusing on personal goals, over 12 weeks.

Results:

7877/9324 (84%) sessions were attended; a median of 34 [IQR 29–36] per participant. A median of 127 [IQR 70–190] repetitions were achieved per participant per session attended. Based upon the Canadian Occupational Performance Measure, goal categories were: self-care 1449/2664 (54%); productivity 374/2664 (14%); leisure 180/2664 (7%) and ‘other’ 661/2664 (25%). For the 2051/2664 goals for which data were available, 1287 (51%) were achieved, ranging between 27% by participants more than 12 months post stroke with baseline Action Research Arm Test scores 0–7, and 88% by those less than three months after stroke with scores 8–19.

Conclusions:

Intervention fidelity was high. Goals relating to self-care were most commonly selected. The proportion of goals achieved varied, depending on time post stroke and baseline arm activity limitation.

JournalClinical Rehabilitation
Journal citation35 (1), pp. 119-134
ISSN1477-0873
Year2020
PublisherSAGE Publications
Publisher's version
License
File Access Level
Anyone
Supplemental file
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1177/0269215520953833
Publication dates
Online11 Sep 2020
Publication process dates
Accepted10 Jul 2020
Deposited11 Sep 2020
FunderNational Institute for Health Research Health Technology Assessment programme
Copyright holder© 2020 The Authors
Permalink -

https://repository.uel.ac.uk/item/885v2

Download files


Publisher's version
0269215520953833.pdf
License: CC BY 4.0
File access level: Anyone


Supplemental file
EULT_manuals_070220.pdf
File access level: Anyone

  • 153
    total views
  • 243
    total downloads
  • 4
    views this month
  • 3
    downloads this month

Export as

Related outputs

Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial
Fernandez-Garcia, C., Ternent, L., Homer, T. M., Rodgers, H., Bosomworth, H., Shaw, L., Aird, L., Andole, S., Cohen, D., Dawson, J., Finch, T., Ford, G., Francis, R., Hogg, S., Hughes, N., Krebs, H. I., Price, C., Turner, D., Van Wijck, F., Wilkes, S., Wilson, N. and Vale, L. 2021. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open. 11 (Art. e042081). https://doi.org/10.1136/bmjopen-2020-042081
Motor adaptation and internal model formation in a robot-mediated forcefield
Taga, M., Curci, A., Pizzamiglio, S., Lacal, I., Turner, D. and Fu, C. 2021. Motor adaptation and internal model formation in a robot-mediated forcefield. Psychoradiology. 1 (2), p. 73–87. https://doi.org/10.1093/psyrad/kkab007
Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Finch, T., Alvarado, N., Ternent, L., Fernandez-Garcia, C., Aird, L., Andole, S., Cohen, D. L., Dawson, J., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Turner, D. L., Vale, L., Wilkes, S. and Shaw, L. 2020. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Health Technology Assessment. 24 (54). https://doi.org/10.3310/hta24540
Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study
Mehler, D. M. A., Williams, A. N., Whittaker, J. R., Krause, F., Lührs, M., Kunas, S., Wise, R. G., Shetty H. G. M., Turner, D. and Linden, D. E. J. 2020. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Frontiers in Human Neuroscience. 14 (Art. 226). https://doi.org/10.3389/fnhum.2020.00226
Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Turner, D., Vale, L., Wilkes, S. and Shaw, L. 2019. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 394 (10192), pp. 51-62. https://doi.org/10.1016/S0140-6736(19)31055-4
Dynamics of brain connectivity after stroke
Desowska, A. and Turner, D. 2019. Dynamics of brain connectivity after stroke. Reviews in the Neurosciences. 30 (6), p. 605–623. https://doi.org/10.1515/revneuro-2018-0082
The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
Mehler, David M.A., Williams, Angharad N., Krause, Florian, Lührs, Michael, Wise, Richard G., Turner, D., Linden, David E.J. and Whittaker, Joseph R. 2018. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. NeuroImage. 184, pp. 36-44. https://doi.org/10.1016/j.neuroimage.2018.09.007
Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields
Faiman, Irene, Pizzamiglio, S. and Turner, D. 2018. Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields. NeuroImage. 174, pp. 494-503. https://doi.org/10.1016/j.neuroimage.2018.03.054
Neural Predictors of Gait Stability When Walking Freely in the Real-World.
Pizzamiglio, S., Abdalla, H., Naeem, U. and Turner, D. 2018. Neural Predictors of Gait Stability When Walking Freely in the Real-World. Journal of NeuroEngineering and Rehabilitation. 15 (11). https://doi.org/10.1186/s12984-018-0357-z
Advanced technology for gait rehabilitation --- An overview
Mikolajczyk, Tadeusz, Ciobanu, Ileana, Badea, Joana, Iliescu, Alina, Pizzamiglio, S., Schauer, Thomas, See, Thomas, Seicu, Lucien, Turner, D. and Berteanu, Mihai 2018. Advanced technology for gait rehabilitation --- An overview. Advances in Mechanical Engineering. 10 (7), pp. 1-19. https://doi.org/10.1177/1687814018783627
Neural correlates of single- and dual-task walking in the real world
Pizzamiglio, Sara, Naeem, U., Abdalla, H. and Turner, D. 2017. Neural correlates of single- and dual-task walking in the real world. Frontiers in Human Neuroscience. 11, p. Art 460. https://doi.org/10.3389/fnhum.2017.00460
Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial
Rodgers, Helen, Shaw, Lisa, Bosomworth, Helen, Aird, Lydia, Alvarado, Natasha, Andole, Sreeman, Cohen, David L., Dawson, Jesse, Eyre, Janet, Finch, Tracy, Ford, Gary A., Hislop, Jennifer, Hogg, Steven, Howel, Denise, Hughes, Niall, Krebs, Hermano Igo, Price, Christopher, Rochester, Lynn, Stamp, Elaine, Ternent, Laura, Turner, D., Vale, Luke, Warburton, Elizabeth, van Wijck, Frederike and Wilkes, Scott 2017. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial. Trials. 18, p. Art. 340. https://doi.org/10.1186/s13063-017-2083-4
High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation
Pizzamiglio, Sara, De Lillo, Martina, Naeem, U., Abdalla, Hassan and Turner, D. 2017. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation. Frontiers in Physiology. 7 (668), pp. 1-14. https://doi.org/10.3389/fphys.2016.00668
Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training
Pizzamiglio, S., Desowska, A., Mohajer Shojaii, P., Taga, M. and Turner, D. 2017. Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training. NeuroRehabilitation. 41 (1), pp. 17-29. https://doi.org/10.3233/NRE-171453
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96. https://doi.org/10.1016/j.procs.2017.08.297
Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
Linden, David E.J. and Turner, D. 2016. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Current Opinion in Neurology. 29 (4), pp. 412-418. https://doi.org/10.1097/WCO.0000000000000340
Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial
Subramanian, Leena, Busse-Morris, Monica, Brosnan, Meadhbh, Turner, D., Morris, Huw R. and Linden, David E. J. 2016. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial. Frontiers in Behavioural Neuroscience. 10, p. Art.111. https://doi.org/10.3389/fnbeh.2016.00111
Spinal plasticity in robot-mediated therapy for the lower limbs
Stevenson, Andrew JT, Mrachacz-Kersting, Natalie, van Asseldonk, Edwin, Turner, D. and Spaich, Erika G. 2015. Spinal plasticity in robot-mediated therapy for the lower limbs. Journal of NeuroEngineering and Rehabilitation. 12 (1).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex
Hunter, Timothy, Sacco, Paul, Nitsche, Michael A. and Turner, D. 2009. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. Journal of Physiology. 587 (12).