Advanced technology for gait rehabilitation --- An overview

Article


Mikolajczyk, Tadeusz, Ciobanu, Ileana, Badea, Joana, Iliescu, Alina, Pizzamiglio, S., Schauer, Thomas, See, Thomas, Seicu, Lucien, Turner, D. and Berteanu, Mihai 2018. Advanced technology for gait rehabilitation --- An overview. Advances in Mechanical Engineering. 10 (7), pp. 1-19. https://doi.org/10.1177/1687814018783627
AuthorsMikolajczyk, Tadeusz, Ciobanu, Ileana, Badea, Joana, Iliescu, Alina, Pizzamiglio, S., Schauer, Thomas, See, Thomas, Seicu, Lucien, Turner, D. and Berteanu, Mihai
Abstract

Most gait training systems are designed for acute and subacute neurological inpatients. Many systems are used for
relearning gait movements (nonfunctional training) or gait cycle training (functional gait training). Each system presents
its own advantages and disadvantages in terms of functional outcomes. However, training gait cycle movements is not
sufficient for the rehabilitation of ambulation. There is a need for new solutions to overcome the limitations of existing
systems in order to ensure individually tailored training conditions for each of the potential users, no matter the complexity
of his or her condition. There is also a need for a new, integrative approach in gait rehabilitation, one that encompasses
and addresses all aspects of physical as well as psychological aspects of ambulation in real-life multitasking
situations. In this respect, a multidisciplinary multinational team performed an overview of the current technology for
gait rehabilitation and reviewed the principles of ambulation training.

JournalAdvances in Mechanical Engineering
Journal citation10 (7), pp. 1-19
ISSN1687-8132
Year2018
PublisherSAGE Publications
Publisher's version
License
Digital Object Identifier (DOI)https://doi.org/10.1177/1687814018783627
Web address (URL)https://doi.org/10.1177/1687814018783627
Publication dates
Online29 Jul 2018
Print01 Jul 2018
Publication process dates
Deposited26 Oct 2017
Accepted24 May 2018
Accepted25 Oct 2017
Copyright information© 2018 The authors
Permalink -

https://repository.uel.ac.uk/item/8478w

Download files


Publisher's version
1687814018783627.pdf
License: CC BY 4.0

  • 222
    total views
  • 540
    total downloads
  • 2
    views this month
  • 6
    downloads this month

Export as

Related outputs

Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial
Fernandez-Garcia, C., Ternent, L., Homer, T. M., Rodgers, H., Bosomworth, H., Shaw, L., Aird, L., Andole, S., Cohen, D., Dawson, J., Finch, T., Ford, G., Francis, R., Hogg, S., Hughes, N., Krebs, H. I., Price, C., Turner, D., Van Wijck, F., Wilkes, S., Wilson, N. and Vale, L. 2021. Economic evaluation of robot-assisted training versus an enhanced upper limb therapy programme or usual care for patients with moderate or severe upper limb functional limitation due to stroke: results from the RATULS randomised controlled trial. BMJ Open. 11 (Art. e042081). https://doi.org/10.1136/bmjopen-2020-042081
Motor adaptation and internal model formation in a robot-mediated forcefield
Taga, M., Curci, A., Pizzamiglio, S., Lacal, I., Turner, D. and Fu, C. 2021. Motor adaptation and internal model formation in a robot-mediated forcefield. Psychoradiology. 1 (2), p. 73–87. https://doi.org/10.1093/psyrad/kkab007
Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Finch, T., Alvarado, N., Ternent, L., Fernandez-Garcia, C., Aird, L., Andole, S., Cohen, D. L., Dawson, J., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Turner, D. L., Vale, L., Wilkes, S. and Shaw, L. 2020. Robot-assisted training compared with an enhanced upper limb therapy programme and with usual care for upper limb functional limitation after stroke: the RATULS three-group RCT. Health Technology Assessment. 24 (54). https://doi.org/10.3310/hta24540
Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement
Bosomworth, H., Rodgers, H., Shaw, L., Smith, L., Aird, L., Howe, D., Wilson, N., Alvarado, N., Andole, S., Cohen, D., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Vale, L., Turner, D., Wilkes, S., Krebs, H. I. and van Wijck, F. 2020. Evaluation of the enhanced upper limb therapy programme within the Robot-Assisted Training for the Upper Limb after Stroke trial: descriptive analysis of intervention fidelity, goal selection and goal achievement. Clinical Rehabilitation. 35 (1), pp. 119-134. https://doi.org/10.1177/0269215520953833
Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study
Mehler, D. M. A., Williams, A. N., Whittaker, J. R., Krause, F., Lührs, M., Kunas, S., Wise, R. G., Shetty H. G. M., Turner, D. and Linden, D. E. J. 2020. Graded fMRI Neurofeedback Training of Motor Imagery in Middle Cerebral Artery Stroke Patients: A Preregistered Proof-of-Concept Study. Frontiers in Human Neuroscience. 14 (Art. 226). https://doi.org/10.3389/fnhum.2020.00226
Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Turner, D., Vale, L., Wilkes, S. and Shaw, L. 2019. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 394 (10192), pp. 51-62. https://doi.org/10.1016/S0140-6736(19)31055-4
Dynamics of brain connectivity after stroke
Desowska, A. and Turner, D. 2019. Dynamics of brain connectivity after stroke. Reviews in the Neurosciences. 30 (6), p. 605–623. https://doi.org/10.1515/revneuro-2018-0082
The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
Mehler, David M.A., Williams, Angharad N., Krause, Florian, Lührs, Michael, Wise, Richard G., Turner, D., Linden, David E.J. and Whittaker, Joseph R. 2018. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. NeuroImage. 184, pp. 36-44. https://doi.org/10.1016/j.neuroimage.2018.09.007
Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields
Faiman, Irene, Pizzamiglio, S. and Turner, D. 2018. Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields. NeuroImage. 174, pp. 494-503. https://doi.org/10.1016/j.neuroimage.2018.03.054
Neural Predictors of Gait Stability When Walking Freely in the Real-World.
Pizzamiglio, S., Abdalla, H., Naeem, U. and Turner, D. 2018. Neural Predictors of Gait Stability When Walking Freely in the Real-World. Journal of NeuroEngineering and Rehabilitation. 15 (11). https://doi.org/10.1186/s12984-018-0357-z
Neural correlates of single- and dual-task walking in the real world
Pizzamiglio, Sara, Naeem, U., Abdalla, H. and Turner, D. 2017. Neural correlates of single- and dual-task walking in the real world. Frontiers in Human Neuroscience. 11, p. Art 460. https://doi.org/10.3389/fnhum.2017.00460
Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial
Rodgers, Helen, Shaw, Lisa, Bosomworth, Helen, Aird, Lydia, Alvarado, Natasha, Andole, Sreeman, Cohen, David L., Dawson, Jesse, Eyre, Janet, Finch, Tracy, Ford, Gary A., Hislop, Jennifer, Hogg, Steven, Howel, Denise, Hughes, Niall, Krebs, Hermano Igo, Price, Christopher, Rochester, Lynn, Stamp, Elaine, Ternent, Laura, Turner, D., Vale, Luke, Warburton, Elizabeth, van Wijck, Frederike and Wilkes, Scott 2017. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial. Trials. 18, p. Art. 340. https://doi.org/10.1186/s13063-017-2083-4
High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation
Pizzamiglio, Sara, De Lillo, Martina, Naeem, U., Abdalla, Hassan and Turner, D. 2017. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation. Frontiers in Physiology. 7 (668), pp. 1-14. https://doi.org/10.3389/fphys.2016.00668
Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training
Pizzamiglio, S., Desowska, A., Mohajer Shojaii, P., Taga, M. and Turner, D. 2017. Muscle co-contraction patterns in robot-mediated force field learningto guide specific muscle group training. NeuroRehabilitation. 41 (1), pp. 17-29. https://doi.org/10.3233/NRE-171453
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96. https://doi.org/10.1016/j.procs.2017.08.297
Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation
Linden, David E.J. and Turner, D. 2016. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Current Opinion in Neurology. 29 (4), pp. 412-418. https://doi.org/10.1097/WCO.0000000000000340
Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial
Subramanian, Leena, Busse-Morris, Monica, Brosnan, Meadhbh, Turner, D., Morris, Huw R. and Linden, David E. J. 2016. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial. Frontiers in Behavioural Neuroscience. 10, p. Art.111. https://doi.org/10.3389/fnbeh.2016.00111
Spinal plasticity in robot-mediated therapy for the lower limbs
Stevenson, Andrew JT, Mrachacz-Kersting, Natalie, van Asseldonk, Edwin, Turner, D. and Spaich, Erika G. 2015. Spinal plasticity in robot-mediated therapy for the lower limbs. Journal of NeuroEngineering and Rehabilitation. 12 (1).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex
Hunter, Timothy, Sacco, Paul, Nitsche, Michael A. and Turner, D. 2009. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. Journal of Physiology. 587 (12).