Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation

Article


Linden, David E.J. and Turner, D. 2016. Real-time functional magnetic resonance imaging neurofeedback in motor neurorehabilitation. Current Opinion in Neurology. 29 (4), pp. 412-418.
AuthorsLinden, David E.J. and Turner, D.
Abstract

Purpose of review
Recent developments in functional magnetic resonance imaging (fMRI) have catalyzed a new field of
translational neuroscience. Using fMRI to monitor the aspects of task-related changes in neural activation or
brain connectivity, investigators can offer feedback of simple or complex neural signals/patterns back to
the participant on a quasireal-time basis [real-time-fMRI-based neurofeedback (rt-fMRI-NF)]. Here, we
introduce some background methodology of the new developments in this field and give a perspective on
how they may be used in neurorehabilitation in the future.
Recent findings
The development of rt-fMRI-NF has been used to promote self-regulation of activity in several brain regions
and networks. In addition, and unlike other noninvasive techniques, rt-fMRI-NF can access specific
subcortical regions and in principle any region that can be monitored using fMRI including the cerebellum,
brainstem and spinal cord. In Parkinson’s disease and stroke, rt-fMRI-NF has been demonstrated to alter
neural activity after the self-regulation training was completed and to modify specific behaviours.
Summary
Future exploitation of rt-fMRI-NF could be used to induce neuroplasticity in brain networks that are involved
in certain neurological conditions. However, currently, the use of rt-fMRI-NF in randomized, controlled
clinical trials is in its infancy.

JournalCurrent Opinion in Neurology
Journal citation29 (4), pp. 412-418
ISSN1350-7540
Year2016
PublisherLippincott, Williams & Wilkins
Publisher's version
License
CC BY
Digital Object Identifier (DOI)doi:10.1097/WCO.0000000000000340
Publication dates
Print01 Aug 2016
Publication process dates
Deposited04 Jul 2016
Accepted21 Apr 2016
FunderMedical Research Council
Medical Research Council
Permalink -

https://repository.uel.ac.uk/item/84zzw

  • 4
    total views
  • 28
    total downloads
  • 1
    views this month
  • 6
    downloads this month

Related outputs

Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial
Rodgers, H., Bosomworth, H., Krebs, H. I., van Wijck, F., Howel, D., Wilson, N., Aird, L., Alvarado, N., Andole, S., Cohen, D. L., Dawson, J., Fernandez-Garcia, C., Finch, T., Ford, G. A., Francis, R., Hogg, S., Hughes, N., Price, C. I., Ternent, L., Turner, D., Vale, L., Wilkes, S. and Shaw, L. 2019. Robot assisted training for the upper limb after stroke (RATULS): a multicentre randomised controlled trial. Lancet. 394 (10192), pp. 51-62.
Dynamics of brain connectivity after stroke
Desowska, Adela and Turner, D. 2019. Dynamics of brain connectivity after stroke. Reviews in the Neurosciences. 30 (6), p. 605–623.
The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback
Mehler, David M.A., Williams, Angharad N., Krause, Florian, Lührs, Michael, Wise, Richard G., Turner, D., Linden, David E.J. and Whittaker, Joseph R. 2018. The BOLD response in primary motor cortex and supplementary motor area during kinesthetic motor imagery based graded fMRI neurofeedback. NeuroImage. 184, pp. 36-44.
Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields
Faiman, Irene, Pizzamiglio, S. and Turner, D. 2018. Resting-state functional connectivity predicts the ability to adapt to robot-mediated force fields. NeuroImage. 174, pp. 494-503.
Neural Predictors of Gait Stability When Walking Freely in the Real-World.
Pizzamiglio, S., Abdalla, H., Naeem, U. and Turner, D. 2018. Neural Predictors of Gait Stability When Walking Freely in the Real-World. Journal of NeuroEngineering and Rehabilitation. 15 (11).
Advanced technology for gait rehabilitation --- An overview
Mikolajczyk, Tadeusz, Ciobanu, Ileana, Badea, Joana, Iliescu, Alina, Pizzamiglio, S., Schauer, Thomas, See, Thomas, Seicu, Lucien, Turner, D. and Berteanu, Mihai 2018. Advanced technology for gait rehabilitation --- An overview. Advances in Mechanical Engineering. 10 (7), pp. 1-19.
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96.
Neural correlates of single- and dual-task walking in the real world
Pizzamiglio, Sara, Naeem, U., Abdalla, H. and Turner, D. 2017. Neural correlates of single- and dual-task walking in the real world. Frontiers in Human Neuroscience. 11, p. Art 460.
Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial
Rodgers, Helen, Shaw, Lisa, Bosomworth, Helen, Aird, Lydia, Alvarado, Natasha, Andole, Sreeman, Cohen, David L., Dawson, Jesse, Eyre, Janet, Finch, Tracy, Ford, Gary A., Hislop, Jennifer, Hogg, Steven, Howel, Denise, Hughes, Niall, Krebs, Hermano Igo, Price, Christopher, Rochester, Lynn, Stamp, Elaine, Ternent, Laura, Turner, D., Vale, Luke, Warburton, Elizabeth, van Wijck, Frederike and Wilkes, Scott 2017. Robot Assisted Training for the Upper Limb after Stroke (RATULS): study protocol for a randomised controlled trial. Trials. 18, p. Art. 340.
Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training
Pizzamiglio, Sara, Desowska, Adela, Shojaii, Pegah, Taga, Myriam and Turner, D. 2017. Muscle co-contraction patterns in robot-mediated force field learning to guide specific muscle group training. NeuroRehabilitation. 41 (1), pp. 17-29.
High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation
Pizzamiglio, Sara, De Lillo, Martina, Naeem, U., Abdalla, Hassan and Turner, D. 2017. High-Frequency Intermuscular Coherence between Arm Muscles during Robot-Mediated Motor Adaptation. Frontiers in Physiology. 7 (668), pp. 1-14.
Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial
Subramanian, Leena, Busse-Morris, Monica, Brosnan, Meadhbh, Turner, D., Morris, Huw R. and Linden, David E. J. 2016. Functional Magnetic Resonance Imaging Neurofeedback-guided Motor Imagery Training and Motor Training for Parkinson’s Disease: Randomized Trial. Frontiers in Behavioural Neuroscience. 10, p. Art.111.
Spinal plasticity in robot-mediated therapy for the lower limbs
Stevenson, Andrew JT, Mrachacz-Kersting, Natalie, van Asseldonk, Edwin, Turner, D. and Spaich, Erika G. 2015. Spinal plasticity in robot-mediated therapy for the lower limbs. Journal of NeuroEngineering and Rehabilitation. 12 (1).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations
Turner, D., Ramos-Murguialday, Ander, Birbaumer, Niels, Hoffmann, Ulrich and Luft, Andreas 2013. Neurophysiology of Robot-Mediated Training and Therapy: A Perspective for Future Use in Clinical Populations. Frontiers in Neurology. 4 (184).
Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex
Hunter, Timothy, Sacco, Paul, Nitsche, Michael A. and Turner, D. 2009. Modulation of internal model formation during force field-induced motor learning by anodal transcranial direct current stimulation of primary motor cortex. Journal of Physiology. 587 (12).