A Framework for Uncertainty-Aware Visual Analytics in Big Data

Article


Karami, A. 2015. A Framework for Uncertainty-Aware Visual Analytics in Big Data. CEUR Workshop Proceedings. 1510, pp. 146-155.
AuthorsKarami, A.
Abstract

Visual analytics has become an important tool for gaining insight on big data. Numerous statistical tools have been integrated with visualization to help analysts understand big data better and faster. However, data is inherently uncertain, due to sampling error, noise, latency, approximate measurement or unreliable sources. It is very important and vital to quantify and visualize uncertainties for analysts to improve the results of decision making process and gain valuable insights during analytic process on big data. In this paper, we propose a new framework to support uncertainty in the visual analytics process through a fuzzy self-organizing map algorithm running in MapReduce framework for parallel computations on massive amounts of data. This framework uses an interactive data mining module, uncertainty modeling and knowledge representation that supports insertion of the user’s experience and knowledge for uncertainty modeling and visualization in the big data.

JournalCEUR Workshop Proceedings
Journal citation1510, pp. 146-155
ISSN1613-0073
Year2015
PublisherCEUR Workshop Proceedings
Publisher's version
License
CC BY
Web address (URL)http://ceur-ws.org/Vol-1510/
Publication dates
Print12 Nov 2015
Publication process dates
Deposited13 Mar 2017
FunderNational Commission for Scientific and Technological Research (CONICYT) of Chile
National Commission for Scientific and Technological Research (CONICYT) of Chile
National Commission for Scientific and Technological Research
National Commission for Scientific and Technological Research
Copyright information© 2015 the author.
Additional information

This is an article which published in Proceedings of the 3rd International Workshop on Artificial Intelligence and Cognition (AIC), 28th-29th Sept., Turin, Italy

EditorsLieto, Antonio, Battaglino, Cristina, Radicioni, Daniele P. and Sanguinetti, Manuela
Permalink -

https://repository.uel.ac.uk/item/853yw

Download files


Publisher's version
  • 261
    total views
  • 194
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Exploring the Ethical Implications of AI-Powered Personalization in Digital Marketing
Karami, A., Shemshaki, M. and Ghazanfar, M. 2024. Exploring the Ethical Implications of AI-Powered Personalization in Digital Marketing. Data Intelligence. p. In Press. https://doi.org/10.3724/2096-7004.di.2024.0055
Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data
Amirhosseini, M. H., Ayodele, A. L. and Karami, A. 2024. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705185
Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark
Chaudhury, M., Karami, A. and Ghazanfar, M. A. 2022. Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark. Electronics. 11 (16), p. 2567. https://doi.org/10.3390/electronics11162567
Designing a Cost-Efficient Network for a Small Enterprise
Jafari, F., Karami, A. and Osemwengie, L. 2021. Designing a Cost-Efficient Network for a Small Enterprise. SAI Computing Conference 2021. Online 15 - 16 Jul 2021 Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_14
Stock market prediction using machine learning classifiers and social media, news
Khan, W., Ghazanfar, M., Azam, M. A., Karami, A., Alyoubi, K. H. and Alfakeeh, A. S. 2020. Stock market prediction using machine learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing. 13, pp. 3433-3456. https://doi.org/10.1007/s12652-020-01839-w
A novel centroids initialisation for K-means clustering in the presence of benign outliers
Karami, A., Ur Rehman, S. and Ghazanfar, M. 2020. A novel centroids initialisation for K-means clustering in the presence of benign outliers. International Journal of Data Analysis Techniques and Strategies. 12 (4), pp. 287-298. https://doi.org/10.1504/IJDATS.2020.111498
An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities
Karami, A. 2018. An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities. Expert Systems with Applications. 108, pp. 36-60. https://doi.org/10.1016/j.eswa.2018.04.038
Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_34
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01054-6_96
Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options
Karami, A. and Johansson, Ronnie 2013. Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering. 30 (2), pp. 519-534.
Choosing DBSCAN parameters automatically using differential evolution
Karami, A. and Johansson, Ronnie 2014. Choosing DBSCAN parameters automatically using differential evolution. International Journal of Computer Applications. 91 (7), pp. 1-11. https://doi.org/10.5120/15890-5059
A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
Karami, A. and Guerrero-Zapata, Manel 2014. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing. 149 (Part C), pp. 1253-1269. https://doi.org/10.1016/j.neucom.2014.08.070
A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2014. A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking. Neurocomputing. 151 (3), pp. 1262-1282. https://doi.org/10.1016/j.neucom.2014.11.003
An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2015. An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking. Computer Networks. 80 (April), pp. 51-65. https://doi.org/10.1016/j.comnet.2015.01.020
ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network
Karami, A. 2015. ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network. Journal of Network and Computer Applications. 56 (Oct.), pp. 1-18. https://doi.org/10.1016/j.jnca.2015.05.017
A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks
Siddiqui, A., Karami, A. and Johnson, M. O. 2017. A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks. International Journal of Computer Applications. 174 (Art. 4). https://doi.org/10.5120/ijca2017915376