Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options

Article


Karami, A. and Johansson, Ronnie 2013. Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering. 30 (2), pp. 519-534.
AuthorsKarami, A. and Johansson, Ronnie
Abstract

An information fusion system with local sensors sometimes requires the capability
to represent the temporal changes of uncertain sensory information in dynamic and uncertain
situation to access to a hypothesis node which cannot be observed directly. One
of the central issue and challenging problem is the decision of what combination and order
of sensors allocation should be selected between sensors, in order to maximize the
global gain in the flow of information, when the data association is limited. In this area,
Bayesian Networks (BNs) can constitute a coherent fusion structure and introduce different
options (the combination of sensors allocation) for achieving to the hypothesis
node through a number of intermediate nodes that are interrelated by cause and effect.
BNs can rank the options in terms of their probabilities from Bayes’ theorem calculation.
But, decision making based on probabilities and numerical representations might not be
appropriate. Thus, re-ranking the set of options based on multiple criteria such as those
of multi-criteria decision aid (MCDA) should be ideally considered. Re-ranking and selecting
the appropriate options are considered as a multi-attribute decision making
(MADM) problem by user interaction as semi-automatically decision support. In this
paper, Multi Attribute Decision Making (MADM) techniques as TOPSIS, SAW, and
Mixed (Rank Average) for decision-making as well as AHP and Entropy for obtaining
the weights of attributes have been used. Since MADM techniques give most probably
different results according to different approaches and assumptions in the same problem,
statistical analysis done on them. According to the results, the correlation between compared
techniques for re-ranking BN options is strong and positive because of the close
proximity of weights suggested by AHP and Entropy. Mixed method as compared to
TOPSIS and SAW is the preferred technique when there is no historical (real) decision-making
case; moreover, AHP is more acceptable than Entropy for weighting.

KeywordsBayesian networks; sensor allocation; TOPSIS; SAW; AHP; entropy
JournalJournal of Information Science and Engineering
Journal citation30 (2), pp. 519-534
ISSN1016-2364
Year2013
PublisherInstitute of Information Science Academia Sinica
Accepted author manuscript
License
CC BY
Web address (URL)http://www.iis.sinica.edu.tw/page/jise/2014/201403_14.pdf
Publication process dates
Deposited14 Feb 2017
Accepted08 Apr 2013
Accepted08 Apr 2013
Permalink -

https://repository.uel.ac.uk/item/85x70

  • 10
    total views
  • 11
    total downloads
  • 5
    views this month
  • 1
    downloads this month

Related outputs

An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities
Karami, A. 2018. An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities. Expert Systems with Applications. 108, pp. 36-60.
Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2 Springer, Cham.
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 1 Springer, Cham.
A Framework for Uncertainty-Aware Visual Analytics in Big Data
Karami, A. 2015. A Framework for Uncertainty-Aware Visual Analytics in Big Data. CEUR Workshop Proceedings. 1510, pp. 146-155.
Choosing DBSCAN parameters automatically using differential evolution
Karami, A. and Johansson, Ronnie 2014. Choosing DBSCAN parameters automatically using differential evolution. International Journal of Computer Applications. 91 (7), pp. 1-11.
A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
Karami, A. and Guerrero-Zapata, Manel 2014. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing. 149 (Part C), pp. 1253-1269.
A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2014. A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking. Neurocomputing. 151 (3), pp. 1262-1282.
An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2015. An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking. Computer Networks. 80 (April), pp. 51-65.
ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network
Karami, A. 2015. ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network. Journal of Network and Computer Applications. 56 (Oct.), pp. 1-18.
A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks
Siddiqui, A., Karami, A. and Johnson, M. O. 2017. A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks. International Journal of Computer Applications. 174 (Art. 4).