The Impact of Big Data Characteristics on Credit Risk Assessment

Article


Karami, A. and Igbokwe, C. 2025. The Impact of Big Data Characteristics on Credit Risk Assessment. International Journal of Data Science and Analytics. p. In press.
AuthorsKarami, A. and Igbokwe, C.
Abstract

Credit risk assessment is critical for financial institutions' stability and profitability. Traditional methods struggle to assess borrowers with limited credit history or non-traditional income due to insufficient data and outdated models. Big data analytics, characterized by the 5Vs (Volume, Variety, Velocity, Veracity, and Value), offers a transformative solution. This study reviews 50 papers published between 2019 and 2025, demonstrating that leveraging large volumes of diverse data sources (Volume and Variety) with real-time processing (Velocity) and accurate data (Veracity) significantly enhances prediction and financial inclusion (Value). We found that big data reduces biases, refines risk profiles, and provides actionable insights, addressing the limitations of traditional models. The study also analyzes the interconnectedness of Big Data components, including data sources, infrastructure, and the 5Vs, emphasizing the challenges and opportunities. The paper concludes with recommendations for organizations of different sizes on implementing Big Data for credit risk assessment, highlighting a phased approach for adoption.

JournalInternational Journal of Data Science and Analytics
Journal citationp. In press
ISSN2364-415X
2364-4168
Year2025
PublisherSpringer
Accepted author manuscript
License
File Access Level
Anyone
Publication process dates
Accepted02 Mar 2025
Deposited05 Mar 2025
Permalink -

https://repository.uel.ac.uk/item/8z1x5

Restricted files

Accepted author manuscript

  • 15
    total views
  • 3
    total downloads
  • 15
    views this month
  • 3
    downloads this month

Export as

Related outputs

Harmony in Federated Learning: A Comprehensive Review of Techniques to Tackle Heterogeneity and Non-IID Data
Karami, M. and Karami, A. 2025. Harmony in Federated Learning: A Comprehensive Review of Techniques to Tackle Heterogeneity and Non-IID Data. Cluster Computing. p. In press.
Ethereum Smart Contracts: A Hierarchical Analysis of Vulnerability Challenges and Mitigation Strategies
Soofiyan, S. and Karami, A. 2025. Ethereum Smart Contracts: A Hierarchical Analysis of Vulnerability Challenges and Mitigation Strategies. Cluster Computing. p. In press.
Leveraging Big Data Characteristics for Enhanced Healthcare Fraud Detection
Karami, A. and Jafari, F. 2025. Leveraging Big Data Characteristics for Enhanced Healthcare Fraud Detection. Cluster Computing. p. In press.
Breaking Down SEO Complexity: Bridging PCA and Bayesian-Optimized t-SNE
Karami, A., Ghasemabadi, S. F. and Amirhosseini, M. 2024. Breaking Down SEO Complexity: Bridging PCA and Bayesian-Optimized t-SNE. 2024 IEEE International Conference on Big Knowledge (ICBK). IEEE. https://doi.org/10.1109/ICKG63256.2024.00028
Exploring the Ethical Implications of AI-Powered Personalization in Digital Marketing
Karami, A., Shemshaki, M. and Ghazanfar, M. 2024. Exploring the Ethical Implications of AI-Powered Personalization in Digital Marketing. Data Intelligence. p. In Press. https://doi.org/10.3724/2096-7004.di.2024.0055
Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data
Amirhosseini, M. H., Ayodele, A. L. and Karami, A. 2024. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705185
Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark
Chaudhury, M., Karami, A. and Ghazanfar, M. A. 2022. Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark. Electronics. 11 (16), p. 2567. https://doi.org/10.3390/electronics11162567
Designing a Cost-Efficient Network for a Small Enterprise
Jafari, F., Karami, A. and Osemwengie, L. 2021. Designing a Cost-Efficient Network for a Small Enterprise. SAI Computing Conference 2021. Online 15 - 16 Jul 2021 Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_14
Stock market prediction using machine learning classifiers and social media, news
Khan, W., Ghazanfar, M., Azam, M. A., Karami, A., Alyoubi, K. H. and Alfakeeh, A. S. 2020. Stock market prediction using machine learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing. 13, pp. 3433-3456. https://doi.org/10.1007/s12652-020-01839-w
A novel centroids initialisation for K-means clustering in the presence of benign outliers
Karami, A., Ur Rehman, S. and Ghazanfar, M. 2020. A novel centroids initialisation for K-means clustering in the presence of benign outliers. International Journal of Data Analysis Techniques and Strategies. 12 (4), pp. 287-298. https://doi.org/10.1504/IJDATS.2020.111498
An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities
Karami, A. 2018. An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities. Expert Systems with Applications. 108, pp. 36-60. https://doi.org/10.1016/j.eswa.2018.04.038
Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_34
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01054-6_96
A Framework for Uncertainty-Aware Visual Analytics in Big Data
Karami, A. 2015. A Framework for Uncertainty-Aware Visual Analytics in Big Data. CEUR Workshop Proceedings. 1510, pp. 146-155.
Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options
Karami, A. and Johansson, Ronnie 2013. Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering. 30 (2), pp. 519-534.
Choosing DBSCAN parameters automatically using differential evolution
Karami, A. and Johansson, Ronnie 2014. Choosing DBSCAN parameters automatically using differential evolution. International Journal of Computer Applications. 91 (7), pp. 1-11. https://doi.org/10.5120/15890-5059
A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
Karami, A. and Guerrero-Zapata, Manel 2014. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing. 149 (Part C), pp. 1253-1269. https://doi.org/10.1016/j.neucom.2014.08.070
A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2014. A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking. Neurocomputing. 151 (3), pp. 1262-1282. https://doi.org/10.1016/j.neucom.2014.11.003
An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2015. An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking. Computer Networks. 80 (April), pp. 51-65. https://doi.org/10.1016/j.comnet.2015.01.020
ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network
Karami, A. 2015. ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network. Journal of Network and Computer Applications. 56 (Oct.), pp. 1-18. https://doi.org/10.1016/j.jnca.2015.05.017
A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks
Siddiqui, A., Karami, A. and Johnson, M. O. 2017. A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks. International Journal of Computer Applications. 174 (Art. 4). https://doi.org/10.5120/ijca2017915376