An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking

Article


Karami, A. and Guerrero-Zapata, Manel 2015. An ANFIS-based cache replacement method for mitigating cache pollution attacks in Named Data Networking. Computer Networks. 80 (April), pp. 51-65. https://doi.org/10.1016/j.comnet.2015.01.020
AuthorsKarami, A. and Guerrero-Zapata, Manel
Abstract

Named Data Networking (NDN) is a candidate next-generation Internet architecture designed to overcome the fundamental limitations of the current IP-based Internet, in particular strong security. The ubiquitous in-network caching is a key NDN feature. However, pervasive caching strengthens security problems namely cache pollution attacks including cache poisoning (i.e., introducing malicious content into caches as false-locality) and cache pollution (i.e., ruining the cache locality with new unpopular content as locality-disruption).

In this paper, a new cache replacement method based on Adaptive Neuro-Fuzzy Inference System (ANFIS) is presented to mitigate the cache pollution attacks in NDN. The ANFIS structure is built using the input data related to the inherent characteristics of the cached content and the output related to the content type (i.e., healthy, locality-disruption, and false-locality). The proposed method detects both false-locality and locality-disruption attacks as well as a combination of the two on different topologies with high accuracy, and mitigates them efficiently without very much computational cost as compared to the most common policies.

KeywordsNamed Data Networking; False-locality; Locality-disruption; Cache replacement; ANFIS
JournalComputer Networks
Journal citation80 (April), pp. 51-65
ISSN1389-1286
Year2015
PublisherElsevier
Accepted author manuscript
License
CC BY-NC-ND
Digital Object Identifier (DOI)https://doi.org/10.1016/j.comnet.2015.01.020
Publication dates
Print07 Feb 2015
Publication process dates
Deposited14 Feb 2017
Accepted30 Jan 2015
Copyright information© 2015 Elsevier.
Permalink -

https://repository.uel.ac.uk/item/8573x

Download files


Accepted author manuscript
ANFIS-based Caching.pdf
License: CC BY-NC-ND

  • 208
    total views
  • 403
    total downloads
  • 3
    views this month
  • 1
    downloads this month

Export as

Related outputs

Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data
Amirhosseini, M. H., Ayodele, A. L. and Karami, A. 2024. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE.
Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark
Chaudhury, M., Karami, A. and Ghazanfar, M. A. 2022. Large-Scale Music Genre Analysis and Classification Using Machine Learning with Apache Spark. Electronics. 11 (16), p. 2567. https://doi.org/10.3390/electronics11162567
Designing a Cost-Efficient Network for a Small Enterprise
Jafari, F., Karami, A. and Osemwengie, L. 2021. Designing a Cost-Efficient Network for a Small Enterprise. SAI Computing Conference 2021. Online 15 - 16 Jul 2021 Springer, Cham. https://doi.org/10.1007/978-3-030-80119-9_14
Stock market prediction using machine learning classifiers and social media, news
Khan, W., Ghazanfar, M., Azam, M. A., Karami, A., Alyoubi, K. H. and Alfakeeh, A. S. 2020. Stock market prediction using machine learning classifiers and social media, news. Journal of Ambient Intelligence and Humanized Computing. 13, pp. 3433-3456. https://doi.org/10.1007/s12652-020-01839-w
A novel centroids initialisation for K-means clustering in the presence of benign outliers
Karami, A., Ur Rehman, S. and Ghazanfar, M. 2020. A novel centroids initialisation for K-means clustering in the presence of benign outliers. International Journal of Data Analysis Techniques and Strategies. 12 (4), pp. 287-298. https://doi.org/10.1504/IJDATS.2020.111498
An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities
Karami, A. 2018. An Anomaly-based Intrusion Detection System in Presence of Benign Outliers with Visualization Capabilities. Expert Systems with Applications. 108, pp. 36-60. https://doi.org/10.1016/j.eswa.2018.04.038
Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_34
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01054-6_96
A Framework for Uncertainty-Aware Visual Analytics in Big Data
Karami, A. 2015. A Framework for Uncertainty-Aware Visual Analytics in Big Data. CEUR Workshop Proceedings. 1510, pp. 146-155.
Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options
Karami, A. and Johansson, Ronnie 2013. Utilization of multi attribute decision making techniques to integrate automatic and manual ranking of options. Journal of Information Science and Engineering. 30 (2), pp. 519-534.
Choosing DBSCAN parameters automatically using differential evolution
Karami, A. and Johansson, Ronnie 2014. Choosing DBSCAN parameters automatically using differential evolution. International Journal of Computer Applications. 91 (7), pp. 1-11. https://doi.org/10.5120/15890-5059
A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks
Karami, A. and Guerrero-Zapata, Manel 2014. A fuzzy anomaly detection system based on hybrid PSO-Kmeans algorithm in content-centric networks. Neurocomputing. 149 (Part C), pp. 1253-1269. https://doi.org/10.1016/j.neucom.2014.08.070
A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking
Karami, A. and Guerrero-Zapata, Manel 2014. A hybrid multiobjective RBF-PSO method for mitigating DoS attacks in Named Data Networking. Neurocomputing. 151 (3), pp. 1262-1282. https://doi.org/10.1016/j.neucom.2014.11.003
ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network
Karami, A. 2015. ACCPndn: Adaptive Congestion Control Protocol in Named Data Networking by learning capacities using optimized Time-Lagged Feedforward Neural Network. Journal of Network and Computer Applications. 56 (Oct.), pp. 1-18. https://doi.org/10.1016/j.jnca.2015.05.017
A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks
Siddiqui, A., Karami, A. and Johnson, M. O. 2017. A Wormhole Attack Detection and Prevention Technique in Wireless Sensor Networks. International Journal of Computer Applications. 174 (Art. 4). https://doi.org/10.5120/ijca2017915376