Natural Language Processing approach to NLP Meta model automation

Conference paper


Amirhosseini, M.H., Kazemian, H., Ouazzane, K. and Chandler, C. 2018. Natural Language Processing approach to NLP Meta model automation. 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil 08 - 13 Jul 2018 IEEE. https://doi.org/10.1109/IJCNN.2018.8489609
AuthorsAmirhosseini, M.H., Kazemian, H., Ouazzane, K. and Chandler, C.
TypeConference paper
Abstract

Neuro Linguistic Programming (NLP) is one of the most utilised approaches for personality development and Meta model is one of the most important techniques in this process. Usually, when one speaks about a problem or a situation, the words that one chooses will delete, distort or generalize portions of their experience. Meta model, which is a set of specific questions or language patterns, can be used to understand and recover the information hidden behind the words used. This technique can be adopted to understand other people’s problems or enable them to understand their own issues better. Applying the Meta Model, however, requires a great level of skill and experience for correct identification of deletion, distortion and generalization. Using the appropriate recovery questions is challenging for NLP practitioners and Psychologists. Moreover, the efficiency and accuracy of existing methods on the Meta model can potentially be hindered by human errors such as personal judgment or lack of experience and skill. This research aims to automate the process of using the Meta Model in conversation in order to eliminate human errors, thereby increasing the efficiency and accuracy of this method. An intelligent software has been developed using Natural Language Processing, with the ability to apply the Meta model techniques during conversation with its user. Comparisons of this software with performance of an established NLP practitioner have shown increased accuracy in identification of the deletion and generalization processes. Recovery of information has also been more efficient in the software in comparison to an NLP practitioner.

KeywordsNeuro Linguistic Programming; Natural Language Processing; Meta Model; Personality Development; NLP
Year2018
Conference2018 International Joint Conference on Neural Networks (IJCNN)
PublisherIEEE
Accepted author manuscript
License
File Access Level
Anyone
Publication dates
Online15 Oct 2018
Publication process dates
Deposited17 Apr 2020
ISSN2161-4407
Book title2018 International Joint Conference on Neural Networks (IJCNN): Proceedings
ISBN978-1-5090-6014-6
Digital Object Identifier (DOI)https://doi.org/10.1109/IJCNN.2018.8489609
Web address (URL)https://doi.org/10.1109/IJCNN.2018.8489609
Copyright holder© 2018 IEEE
Copyright informationPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Permalink -

https://repository.uel.ac.uk/item/87x53

Download files


Accepted author manuscript
Amirhosseini_IEEE IJCNN 2018.pdf
License: All rights reserved
File access level: Anyone

  • 225
    total views
  • 264
    total downloads
  • 10
    views this month
  • 2
    downloads this month

Export as

Related outputs

Utilizing machine Learning Techniques to Predict State-of-Charge in Li-ion Batteries
Khatri, A., Lota, J., Nepal, P. and Amirhosseini, M. H. 2024. Utilizing machine Learning Techniques to Predict State-of-Charge in Li-ion Batteries. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705192
AI-Enhanced Prediction of Multi Organ Failure in COVID-19 Patients
Rajakaruna, I., Amirhosseini, M. H., Li, Y. and Arachcillage, D. J. 2024. AI-Enhanced Prediction of Multi Organ Failure in COVID-19 Patients. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705181
Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data
Amirhosseini, M. H., Ayodele, A. L. and Karami, A. 2024. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705185
An AI Powered System to Detect Autism Spectrum Disorder in Toddlers
Amirhosseini, M. H., Alam, N., Kalabi, F. and Virdee, B. 2024. An AI Powered System to Detect Autism Spectrum Disorder in Toddlers. ICDAM-2024: 5th International Conference on Data Analytics and Management. London, UK 14 - 15 Jun 2024
Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends
Valizadeh, A. and Amirhosseini, M. 2024. Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends. SN Computer Science. 5 (Art. 717). https://doi.org/10.1007/s42979-024-03046-2
A Graph-Based Method for Identity Resolution to Assist Police Force Investigative Process
Amirhosseini, M., Kazemian, H. and Phillips, M. 2024. A Graph-Based Method for Identity Resolution to Assist Police Force Investigative Process. Journal of Cyber Security and Technology. In Press. https://doi.org/10.1080/23742917.2024.2354555
Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning
Valizadeh, A., Amirhosseini, M. H. and Ghorbani, Y. 2024. Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning. Computers and Chemical Engineering. 183 (Art. 108623). https://doi.org/10.1016/j.compchemeng.2024.108623
An artificial intelligence approach to predicting personality types in dogs
Amirhosseini, M. H., Yadav, V., Serpell, J. A., Pettigrew, P. and Kain, P. 2024. An artificial intelligence approach to predicting personality types in dogs. Scientific Reports. 14 (Art. 2404). https://doi.org/10.1038/s41598-024-52920-9
Forecasting Bitcoin Prices in the Context of the COVID-19 Pandemic Using Machine Learning Approaches
Sontakke, P., Jafari, F., Saeedi, M. and Amirhosseini, M. 2024. Forecasting Bitcoin Prices in the Context of the COVID-19 Pandemic Using Machine Learning Approaches. ICDAM-2023: 4th International Conference on Data Analytics & Management. London, UK 23 - 24 Jun 2023 Springer. https://doi.org/10.1007/978-981-99-6544-1_7
An AI powered system to enhance self-reflection practice in coaching
Jelodari, M., Amirhosseini, M. H. and Giraldez Hayes, A. 2023. An AI powered system to enhance self-reflection practice in coaching. Cognitive Computation and Systems. 5 (4), pp. 243-254. https://doi.org/10.1049/ccs2.12087
Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis. Machine Learning and Applications: An International Journal (MLAIJ). 10 (2/3), pp. 1-15. https://doi.org/10.5121/mlaij.2023.10301
Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment . 5th International Conference on Machine Learning & Applications (CMLA 2023). Sydney, Australia 17 - 18 Jun 2023 AIRCC Publishing Corporation.
A Machine Learning Approach to Identify the Preferred Representational System of a Person
Amirhosseini, M. and Wall, J. 2022. A Machine Learning Approach to Identify the Preferred Representational System of a Person. Multimodal Technologies and Interaction. 6 (12), p. 112. https://doi.org/10.3390/mti6120112
Application of Graph-Based Technique to Identity Resolution
Kazemian, H., Amirhosseini, M. H. and Phillips, M. 2022. Application of Graph-Based Technique to Identity Resolution. AIAI 2022: 18th International Conference on Artificial Intelligence Applications and Innovations. Crete, Greece 17 - 20 Jun 2022 Springer. https://doi.org/10.1007/978-3-031-08333-4_38
A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data
Phillips, M., Amirhosseini, M. and Kazemian, H. 2020. A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data. 2020 IEEE Symposium Series on Computational Intelligence. Online 01 - 04 Dec 2020 IEEE. https://doi.org/10.1109/SSCI47803.2020.9308182
Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®
Amirhosseini, M.H. and Kazemian, H. 2020. Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®. Multimodal Technologies and Interaction. 4 (Art. 9). https://doi.org/10.3390/mti4010009
Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing
Amirhosseini, M.H. and Kazemian, H. 2019. Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing. Cognitive Processing. 20 (2), p. 175–193. https://doi.org/10.1007/s10339-019-00912-3