A Rule and Graph Based Method for Targeted Identity Resolution in Policing Data

Conference paper


Phillips, M., Amirhosseini, M. and Kazemian, H. 2020. A Rule and Graph Based Method for Targeted Identity Resolution in Policing Data. 2020 IEEE Symposium Series on Computational Intelligence. Online 01 - 04 Dec 2020 IEEE.
AuthorsPhillips, M., Amirhosseini, M. and Kazemian, H.
TypeConference paper
Abstract

In criminal records, intentional manipulation of data is prevalent to create ambiguous identity and mislead authorities. Registering data electronically can result in misspelled data, variations in naming order, case sensitive data and inconsistencies in abbreviations and terminology. Therefore, trying to obtain the true identity (or identities) of a suspect can be a challenge for law enforcement agencies. We have developed a targeted approach to identity resolution which uses a rule-based scoring system on physical and official identity attributes and a graph-based analysis on social identity attributes to interrogate policing data and resolve whether a specific target is using multiple identities. The approach has been tested on an anonymized policing dataset, used in the SPIRIT project, funded by the European Union’s Horizon 2020. The dataset contains four ‘known’ identities using a total of five false identities. 23 targets were inputted into the methodology with no knowledge of how many or which had false identities. The rule-based scoring system ranked four of the five false identities with the joint highest score for the relevant target name with the remaining false identity holding the joint second highest score for its target. Moreover, when using graph analysis, 51 suspected false identities were found for the 23 targets with four of the five false identities linked through the crimes they had been involved in. Therefore, an identity resolution approach using both a rule-based scoring system and graph analysis, could be effective in facilitating the investigation process for law enforcement agencies and assisting them in finding criminals using false identities.

KeywordsIdentity Resolution; Identity Model; Graph Analysis; Rule-Based; Policing Data
Year2020
Conference2020 IEEE Symposium Series on Computational Intelligence
PublisherIEEE
Accepted author manuscript
License
File Access Level
Anyone
Publication process dates
Accepted18 Sep 2020
Deposited07 Oct 2020
Book title2020 IEEE Symposium Series on Computational Intelligence (SSCI)
ISBN978-1-7281-2547-3
Copyright holder© 2020 IEEE
Copyright informationPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Permalink -

https://repository.uel.ac.uk/item/888q1

Download files

Accepted author manuscript
Amirhosseini_IEEE SSCI 2020.pdf
License: All rights reserved
File access level: Anyone

  • 5
    total views
  • 24
    total downloads
  • 5
    views this month
  • 24
    downloads this month

Export as

Related outputs

Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®
Amirhosseini, M.H. and Kazemian, H. 2020. Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®. Multimodal Technologies and Interaction. 4 (Art. 9). https://doi.org/10.3390/mti4010009
Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing
Amirhosseini, M.H. and Kazemian, H. 2019. Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing. Cognitive Processing. 20 (2), p. 175–193. https://doi.org/10.1007/s10339-019-00912-3
Natural Language Processing approach to NLP Meta model automation
Amirhosseini, M.H., Kazemian, H., Ouazzane, K. and Chandler, C. 2018. Natural Language Processing approach to NLP Meta model automation. 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil 08 - 13 Jul 2018 IEEE. https://doi.org/10.1109/IJCNN.2018.8489609