Comparison of seven Artificial Intelligence models in Predicting Venous Thromboembolism in COVID-19 Patients

Article


Rajakaruna, I., Amirhosseini, M., Makris, M., Laffan, M., Li, Y. and Arachchillage, D. J. 2025. Comparison of seven Artificial Intelligence models in Predicting Venous Thromboembolism in COVID-19 Patients. Research and Practice in Thrombosis and Haemostasis. (Art. 102711), p. In press. https://doi.org/10.1016/j.rpth.2025.102711
AuthorsRajakaruna, I., Amirhosseini, M., Makris, M., Laffan, M., Li, Y. and Arachchillage, D. J.
Abstract

Introduction:
An Artificial Intelligence (AI) approach can be used to predict venous thromboembolism (VTE).

Aim:
To compare different AI models in predicting VTE using data from patients with COVID-19.

Methods:
We used feature ranking through recursive feature elimination with AI algorithms (logistic regression and random forest classifier) and standard statistical methods to identify the significant factors that contribute to developing VTE in COVID-19 patients using a large dataset from “Coagulopathy associated with COVID-19”, a multicentre observational study. We developed seven AI models using the selected significant features to predict the development of VTE during hospitalization and used K-fold cross-validation and hyperparameter tuning to validate and optimize the models. The models' predictive power was tested on 2649 (33% of 8027 overall patients) which were previously separated and not used during model training and validation stages.

Results:
Age, female sex, white ethnicity, comorbidities (diabetes, liver disease, autoimmune disease), and laboratory features (increased haemoglobin, white cell count, D-dimer, lactate dehydrogenase, ferritin) and presence of multi-organ failure were major factors associated with the development of thrombosis. Support Vector Classifier (SVC) model outperformed all other models, achieving an accuracy of 97%. The SVC model also led in precision (0.98), recall (0.97), and F1 score (0.97), and recorded the lowest log-loss score (0.112 on the test dataset), reflecting better model convergence and an improved fit to the data. Additionally, it achieved the highest AUC score (0.983).

Conclusion:
The SVC model delivered the best overall performance outperforming similar studies that developed deep learning and machine learning models for COVID-19.

KeywordsCOVID-19; Thrombosis; Artificial Intelligence; Machine Learning; Deep Learning
JournalResearch and Practice in Thrombosis and Haemostasis
Journal citation(Art. 102711), p. In press
ISSN2475-0379
Year2025
PublisherElsevier for International Society on Thrombosis and Haemostasis
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.rpth.2025.102711
Publication dates
Online27 Feb 2025
Publication process dates
Submitted16 Oct 2024
Accepted14 Feb 2025
Deposited13 Mar 2025
FunderUK Medical Research Council (MRC) and Scottish Government Chief Scientist Office (CSO)
Copyright holderCrown Copyright © 2025
Permalink -

https://repository.uel.ac.uk/item/8z294

Download files

  • 6
    total views
  • 1
    total downloads
  • 6
    views this month
  • 1
    downloads this month

Export as

Related outputs

Breaking Down SEO Complexity: Bridging PCA and Bayesian-Optimized t-SNE
Karami, A., Ghasemabadi, S. F. and Amirhosseini, M. 2024. Breaking Down SEO Complexity: Bridging PCA and Bayesian-Optimized t-SNE. 2024 IEEE International Conference on Big Knowledge (ICBK). IEEE. https://doi.org/10.1109/ICKG63256.2024.00028
A Comparative Analysis of LSTM, ARIMA, XGBoost Algorithms in Predicting Stock Price Direction
Gifty, A. and Li, Y. 2024. A Comparative Analysis of LSTM, ARIMA, XGBoost Algorithms in Predicting Stock Price Direction. Engineering and Technology Journal. 9 (8), p. 4978–4986. https://doi.org/10.47191/etj/v9i08.50
Utilizing machine Learning Techniques to Predict State-of-Charge in Li-ion Batteries
Khatri, A., Lota, J., Nepal, P. and Amirhosseini, M. H. 2024. Utilizing machine Learning Techniques to Predict State-of-Charge in Li-ion Batteries. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705192
AI-Enhanced Prediction of Multi Organ Failure in COVID-19 Patients
Rajakaruna, I., Amirhosseini, M. H., Li, Y. and Arachcillage, D. J. 2024. AI-Enhanced Prediction of Multi Organ Failure in COVID-19 Patients. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705181
Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data
Amirhosseini, M. H., Ayodele, A. L. and Karami, A. 2024. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705185
An AI Powered System to Detect Autism Spectrum Disorder in Toddlers
Amirhosseini, M. H., Alam, N., Kalabi, F. and Virdee, B. 2024. An AI Powered System to Detect Autism Spectrum Disorder in Toddlers. ICDAM-2024: 5th International Conference on Data Analytics and Management. London, UK 14 - 15 Jun 2024
Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends
Valizadeh, A. and Amirhosseini, M. 2024. Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends. SN Computer Science. 5 (Art. 717). https://doi.org/10.1007/s42979-024-03046-2
What Goes Up……: modelling the Bitcoin rollercoaster ride
Li, Y. 2024. What Goes Up……: modelling the Bitcoin rollercoaster ride. ELEKTRO 2024: 15th International Conference. Zakopane, Poland 20 - 22 May 2024 IEEE. https://doi.org/10.1109/ELEKTRO60337.2024.10557119
A Graph-Based Method for Identity Resolution to Assist Police Force Investigative Process
Amirhosseini, M., Kazemian, H. and Phillips, M. 2024. A Graph-Based Method for Identity Resolution to Assist Police Force Investigative Process. Journal of Cyber Security and Technology. In Press. https://doi.org/10.1080/23742917.2024.2354555
Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning
Valizadeh, A., Amirhosseini, M. H. and Ghorbani, Y. 2024. Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning. Computers and Chemical Engineering. 183 (Art. 108623). https://doi.org/10.1016/j.compchemeng.2024.108623
An artificial intelligence approach to predicting personality types in dogs
Amirhosseini, M. H., Yadav, V., Serpell, J. A., Pettigrew, P. and Kain, P. 2024. An artificial intelligence approach to predicting personality types in dogs. Scientific Reports. 14 (Art. 2404). https://doi.org/10.1038/s41598-024-52920-9
Forecasting Bitcoin Prices in the Context of the COVID-19 Pandemic Using Machine Learning Approaches
Sontakke, P., Jafari, F., Saeedi, M. and Amirhosseini, M. 2024. Forecasting Bitcoin Prices in the Context of the COVID-19 Pandemic Using Machine Learning Approaches. ICDAM-2023: 4th International Conference on Data Analytics & Management. London, UK 23 - 24 Jun 2023 Springer. https://doi.org/10.1007/978-981-99-6544-1_7
Credit Rating Prediction Using Different Machine Learning Techniques. International
Aiyegbeni, G., Li, Y., Annan, J. and Adebayo, F. 2023. Credit Rating Prediction Using Different Machine Learning Techniques. International. International Journal of Data Science and Advanced Analytics. 5 (5), pp. 219-238.
An AI powered system to enhance self-reflection practice in coaching
Jelodari, M., Amirhosseini, M. H. and Giraldez Hayes, A. 2023. An AI powered system to enhance self-reflection practice in coaching. Cognitive Computation and Systems. 5 (4), pp. 243-254. https://doi.org/10.1049/ccs2.12087
Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis. Machine Learning and Applications: An International Journal (MLAIJ). 10 (2/3), pp. 1-15. https://doi.org/10.5121/mlaij.2023.10301
Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment . 5th International Conference on Machine Learning & Applications (CMLA 2023). Sydney, Australia 17 - 18 Jun 2023 AIRCC Publishing Corporation.
Improving data quality assessment of connected vehicles data with machine learning and statistical methods
Wall, J., Wondie, M. and Li, Y. 2022. Improving data quality assessment of connected vehicles data with machine learning and statistical methods. Pan African Conference on Artifical Intelligence 2022. 04 - 05 Oct 2022
A Machine Learning Approach to Identify the Preferred Representational System of a Person
Amirhosseini, M. and Wall, J. 2022. A Machine Learning Approach to Identify the Preferred Representational System of a Person. Multimodal Technologies and Interaction. 6 (12), p. 112. https://doi.org/10.3390/mti6120112
Application of Graph-Based Technique to Identity Resolution
Kazemian, H., Amirhosseini, M. H. and Phillips, M. 2022. Application of Graph-Based Technique to Identity Resolution. AIAI 2022: 18th International Conference on Artificial Intelligence Applications and Innovations. Crete, Greece 17 - 20 Jun 2022 Springer. https://doi.org/10.1007/978-3-031-08333-4_38
A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data
Phillips, M., Amirhosseini, M. and Kazemian, H. 2020. A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data. 2020 IEEE Symposium Series on Computational Intelligence. Online 01 - 04 Dec 2020 IEEE. https://doi.org/10.1109/SSCI47803.2020.9308182
Evidencing the impacts of the Olympic Games: The view from London 2012
Brimicombe, A. and Li, Y. 2020. Evidencing the impacts of the Olympic Games: The view from London 2012. in: Neri, M. (ed.) Evaluating the Local Impacts of the Rio Olympics Routledge.
Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®
Amirhosseini, M.H. and Kazemian, H. 2020. Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®. Multimodal Technologies and Interaction. 4 (Art. 9). https://doi.org/10.3390/mti4010009
Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing
Amirhosseini, M.H. and Kazemian, H. 2019. Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing. Cognitive Processing. 20 (2), p. 175–193. https://doi.org/10.1007/s10339-019-00912-3
Natural Language Processing approach to NLP Meta model automation
Amirhosseini, M.H., Kazemian, H., Ouazzane, K. and Chandler, C. 2018. Natural Language Processing approach to NLP Meta model automation. 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil 08 - 13 Jul 2018 IEEE. https://doi.org/10.1109/IJCNN.2018.8489609
A New Variable for Spatial Accessibility Measurement in Social Infrastructure Planning
Li, Y. and Brimicombe, A. 2011. A New Variable for Spatial Accessibility Measurement in Social Infrastructure Planning. in: Proceedings of the 11th International Conference on GeoComputation London University College London.
A New Approach on Rapid Appraisal of Green Roof Potential in Urban Area
Li, Y. and Brimicombe, A. 2015. A New Approach on Rapid Appraisal of Green Roof Potential in Urban Area. LIDAR Magazine. 5 (5), pp. 55-57.
Measuring and assessing the impacts of London 2012
Li, Y. 2015. Measuring and assessing the impacts of London 2012. in: Poynter, Gavin, Viehoff, Valerie and Li, Yang (ed.) The London Olympics and Urban Development: The Mega-Event City Abingdon, Oxon. Routledge. pp. 35-47
Spatial Analysis for Equitable Accessibility in Social Infrastructure Planning
Li, Y. 2016. Spatial Analysis for Equitable Accessibility in Social Infrastructure Planning. in: Timmermans, Harry (ed.) Design & Decision Support Systems in Architecture and Urban Planning Eindhoven University of Technology.
Mobile Geographic Information Systems
Li, Y. and Brimicombe, A. 2012. Mobile Geographic Information Systems. in: Chen, Ruizhi (ed.) Ubiquitous Positioning and Mobile Location-Based Services in Smart Phones IGI Global. pp. 230-253
Road traffic accident hotspot identification using modified Voronoi Process
Ladi, S., Wijeyesekera, D.Chitral, Brimicombe, A. and Li, Y. 2009. Road traffic accident hotspot identification using modified Voronoi Process. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 4th Annual Conference University of East London pp. 189-198
Spatial Discretisation Technology in Coastal Oil Spill Modelling
Li, Y. 2008. Spatial Discretisation Technology in Coastal Oil Spill Modelling. Proceedings of Advances in Computing and Technology. (AC&T) The School of Computing and Technology 3rd Annual Conference University of East London pp. 128-136
Improving Geocoding Rates in Preparation for Crime Data Analysis
Brimicombe, A., Brimicombe, Lily C. and Li, Y. 2007. Improving Geocoding Rates in Preparation for Crime Data Analysis. International Journal of Police Science & Management. 9 (1), pp. 80-92.
Control of spatial discretisation in coastal oil spill modelling
Li, Y. 2007. Control of spatial discretisation in coastal oil spill modelling. International Journal of Applied Earth Observation and Geoinformation. 9 (4), pp. 392-402.
Scenario-based Small Area Population Modelling for Social Infrastructure Planning
Li, Y. and Brimicombe, A. 2008. Scenario-based Small Area Population Modelling for Social Infrastructure Planning. in: Lambrick, David (ed.) Proceedings of GIS Research UK 16th Annual conference GISRUK 2008 pp. 348-353
Agent-based services for the validation and calibration of multi-agent models
Li, Y., Brimicombe, A. and Chao, Li 2008. Agent-based services for the validation and calibration of multi-agent models. Computers, Environment and Urban Systems. 32 (6), pp. 464-473.