Application of Graph-Based Technique to Identity Resolution

Conference paper


Kazemian, H., Amirhosseini, M. H. and Phillips, M. 2022. Application of Graph-Based Technique to Identity Resolution. AIAI 2022: 18th International Conference on Artificial Intelligence Applications and Innovations. Crete, Greece 17 - 20 Jun 2022 Springer. https://doi.org/10.1007/978-3-031-08333-4_38
AuthorsKazemian, H., Amirhosseini, M. H. and Phillips, M.
TypeConference paper
Abstract

These days the ability to prove an individual identity is crucial in social, eco-nomic and legal aspects of life. Identity resolution is the process of semantic reconciliation that determines whether a single identity is the same when be-ing described differently. The importance of identity resolution has been greatly felt these days in the world of online social networking where per-sonal details can be fabricated or manipulated easily. In this research a new graph-based approach has been used for identity resolution, which tries to resolve an identity based on the similarity of attribute values which are relat-ed to different identities in a dataset. Graph analysis techniques such as cen-trality measurement and community detection have been used in this ap-proach. Moreover, a new identity model has been used for the first time. This method has been tested on SPIRIT policing dataset, which is an anony-mized dataset used in SPIRIT project funded by European Union’s Horizon 2020. There are 892 identity records in this dataset and two of them are ‘known’ identities who are using two different names, but they are both be-longing to the same person. These two identities were recognized successful-ly after using the presented method in this paper. This method can assist po-lice forces in their investigation process to find criminals and those who committed a fraud. It can also be useful in other fields such as finance and banking, marketing or customer service.

KeywordsIdentity Resolution; Identity Model; Graph Analysis; Community Detection; Centrality Measurement
Year2022
ConferenceAIAI 2022: 18th International Conference on Artificial Intelligence Applications and Innovations
PublisherSpringer
Accepted author manuscript
License
File Access Level
Anyone
Publication dates
Online10 Jun 2022
Publication process dates
Submitted25 Feb 2022
Deposited16 May 2022
Journal citationpp. 471-482
ISSN1868-4238
Book titleArtificial Intelligence Applications and Innovations: 18th IFIP WG 12.5 International Conference, AIAI 2022, Hersonissos, Crete, Greece, June 17–20, 2022, Proceedings, Part I
Book editorMaglogiannis, I.
Iliadis, L.
Macintyre, J.
Cortez, P.
ISBN978-3-031-08333-4
Digital Object Identifier (DOI)https://doi.org/10.1007/978-3-031-08333-4_38
Copyright holder© 2022 The Author(s)
Additional information

The final publication is available at Springer via https://doi.org/10.1007/978-3-031-08333-4_38

Permalink -

https://repository.uel.ac.uk/item/8q9y4

Download files


Accepted author manuscript
Application of Graph-Based Technique to Identity Resolution.pdf
License: Springer Nature Terms of Use for accepted manuscripts of subscription articles, books and chapters
File access level: Anyone

  • 209
    total views
  • 201
    total downloads
  • 10
    views this month
  • 2
    downloads this month

Export as

Related outputs

Utilizing machine Learning Techniques to Predict State-of-Charge in Li-ion Batteries
Khatri, A., Lota, J., Nepal, P. and Amirhosseini, M. H. 2024. Utilizing machine Learning Techniques to Predict State-of-Charge in Li-ion Batteries. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705192
AI-Enhanced Prediction of Multi Organ Failure in COVID-19 Patients
Rajakaruna, I., Amirhosseini, M. H., Li, Y. and Arachcillage, D. J. 2024. AI-Enhanced Prediction of Multi Organ Failure in COVID-19 Patients. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705181
Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data
Amirhosseini, M. H., Ayodele, A. L. and Karami, A. 2024. Prediction of Depression Severity and Personalised Risk Factors Using Machine Learning on Multimodal Data. IS'24: 12th IEEE International Conference on Intelligent Systems. Varna, Bulgaria 29 - 31 Aug 2024 IEEE. https://doi.org/10.1109/IS61756.2024.10705185
An AI Powered System to Detect Autism Spectrum Disorder in Toddlers
Amirhosseini, M. H., Alam, N., Kalabi, F. and Virdee, B. 2024. An AI Powered System to Detect Autism Spectrum Disorder in Toddlers. ICDAM-2024: 5th International Conference on Data Analytics and Management. London, UK 14 - 15 Jun 2024
Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends
Valizadeh, A. and Amirhosseini, M. 2024. Machine Learning in Lithium-Ion Battery: Applications, Challenges, and Future Trends. SN Computer Science. 5 (Art. 717). https://doi.org/10.1007/s42979-024-03046-2
A Graph-Based Method for Identity Resolution to Assist Police Force Investigative Process
Amirhosseini, M., Kazemian, H. and Phillips, M. 2024. A Graph-Based Method for Identity Resolution to Assist Police Force Investigative Process. Journal of Cyber Security and Technology. In Press. https://doi.org/10.1080/23742917.2024.2354555
Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning
Valizadeh, A., Amirhosseini, M. H. and Ghorbani, Y. 2024. Predictive precision in battery recycling: unveiling lithium battery recycling potential through machine learning. Computers and Chemical Engineering. 183 (Art. 108623). https://doi.org/10.1016/j.compchemeng.2024.108623
An artificial intelligence approach to predicting personality types in dogs
Amirhosseini, M. H., Yadav, V., Serpell, J. A., Pettigrew, P. and Kain, P. 2024. An artificial intelligence approach to predicting personality types in dogs. Scientific Reports. 14 (Art. 2404). https://doi.org/10.1038/s41598-024-52920-9
Forecasting Bitcoin Prices in the Context of the COVID-19 Pandemic Using Machine Learning Approaches
Sontakke, P., Jafari, F., Saeedi, M. and Amirhosseini, M. 2024. Forecasting Bitcoin Prices in the Context of the COVID-19 Pandemic Using Machine Learning Approaches. ICDAM-2023: 4th International Conference on Data Analytics & Management. London, UK 23 - 24 Jun 2023 Springer. https://doi.org/10.1007/978-981-99-6544-1_7
An AI powered system to enhance self-reflection practice in coaching
Jelodari, M., Amirhosseini, M. H. and Giraldez Hayes, A. 2023. An AI powered system to enhance self-reflection practice in coaching. Cognitive Computation and Systems. 5 (4), pp. 243-254. https://doi.org/10.1049/ccs2.12087
Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Sentiment-Driven Cryptocurrency Price Prediction: A Machine Learning Approach Utilizing Historical Data and Social Media Sentiment Analysis. Machine Learning and Applications: An International Journal (MLAIJ). 10 (2/3), pp. 1-15. https://doi.org/10.5121/mlaij.2023.10301
Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment
Bhatt, S., Ghazanfar, M. and Amirhosseini, M. 2023. Machine Learning based Cryptocurrency Price Prediction using historical data and Social Media Sentiment . 5th International Conference on Machine Learning & Applications (CMLA 2023). Sydney, Australia 17 - 18 Jun 2023 AIRCC Publishing Corporation.
A Machine Learning Approach to Identify the Preferred Representational System of a Person
Amirhosseini, M. and Wall, J. 2022. A Machine Learning Approach to Identify the Preferred Representational System of a Person. Multimodal Technologies and Interaction. 6 (12), p. 112. https://doi.org/10.3390/mti6120112
A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data
Phillips, M., Amirhosseini, M. and Kazemian, H. 2020. A Rule and Graph-Based Approach for Targeted Identity Resolution on Policing Data. 2020 IEEE Symposium Series on Computational Intelligence. Online 01 - 04 Dec 2020 IEEE. https://doi.org/10.1109/SSCI47803.2020.9308182
Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®
Amirhosseini, M.H. and Kazemian, H. 2020. Machine Learning Approach to Personality Type Prediction Based on the Myers–Briggs Type Indicator®. Multimodal Technologies and Interaction. 4 (Art. 9). https://doi.org/10.3390/mti4010009
Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing
Amirhosseini, M.H. and Kazemian, H. 2019. Automating the process of identifying the preferred representational system in Neuro Linguistic Programming using Natural Language Processing. Cognitive Processing. 20 (2), p. 175–193. https://doi.org/10.1007/s10339-019-00912-3
Natural Language Processing approach to NLP Meta model automation
Amirhosseini, M.H., Kazemian, H., Ouazzane, K. and Chandler, C. 2018. Natural Language Processing approach to NLP Meta model automation. 2018 International Joint Conference on Neural Networks (IJCNN). Rio de Janeiro, Brazil 08 - 13 Jul 2018 IEEE. https://doi.org/10.1109/IJCNN.2018.8489609