Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning

Article


Nabati, M., Ghorashi, S. and Shahbazian, R. 2021. Joint Coordinate Optimization in Fingerprint-Based Indoor Positioning. IEEE Communications Letters. https://doi.org/10.1109/LCOMM.2020.3047352
AuthorsNabati, M., Ghorashi, S. and Shahbazian, R.
Abstract

Fingerprint-based indoor positioning uses pattern
recognition algorithms (PRAs) to estimate the users’ locations in wireless local area network environments, where satellite-based positioning methods cannot work properly. Traditionally, the training phase of PRA is separately conducted for π‘₯ and 𝑦 coordinates. However, the received signal strength from access points is a unique fingerprint for each measured point, not for π‘₯ and 𝑦 coordinates separately. In this letter, we propose a method to jointly employ the π‘₯ and 𝑦 coordinates during the training phase using a novel PRA-based Gaussian process regression (GPR), named 2D-GPR. Experimental results show that the proposed 2D-GPR improves the accuracy of positioning more than 40π‘π‘š in limited data samples and has a lower calculation cost compared with conventional GPR.

Keywordswireless local area network; fingerprint-based positioning; machine learning; pattern recognition
JournalIEEE Communications Letters
ISSN1089-7798
1558-2558
Year2021
PublisherIEEE
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1109/LCOMM.2020.3047352
Publication dates
Online24 Dec 2020
Publication process dates
AcceptedDec 2020
Deposited30 Mar 2021
Copyright holderΒ© 2020 IEEE
Additional information

Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.

Permalink -

https://repository.uel.ac.uk/item/89283

Download files

Accepted author manuscript
Main_Manuscript.pdf
License: All rights reserved
File access level: Anyone

  • 10
    total views
  • 7
    total downloads
  • 8
    views this month
  • 5
    downloads this month

Export as

Related outputs

A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine
Ezzati Khatab, Z., Hajihoseini Gazestani, A., Ghorashi, S. and Ghavami, M. 2020. A fingerprint technique for indoor localization using autoencoder based semi-supervised deep extreme learning machine. Signal Processing. 181 (Art. 107915). https://doi.org/10.1016/j.sigpro.2020.107915
Joint Optimization of Power and Location in Full-Duplex UAV Enabled Systems
Gazestani A. H., Ghorashi, S. A., Yang, Z. and Shikh-Bahaei, M. 2020. Joint Optimization of Power and Location in Full-Duplex UAV Enabled Systems. IEEE Systems Journal. https://doi.org/10.1109/JSYST.2020.3036275
Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals
Alikhani, N., Moghtadaiee, V. and Ghorashi, S. 2020. Fingerprinting Based Indoor Localization Considering the Dynamic Nature of Wi-Fi Signals. Wireless Personal Communications. 115 (2), pp. 1445-1464. https://doi.org/10.1007/s11277-020-07636-0
Resource Allocation in Full-Duplex UAV Enabled Multi Small Cell Networks
Hajihoseini Gazestani, A., Ghorashi, S. A., Yang, Z. and Shikh-Bahaei, M 2020. Resource Allocation in Full-Duplex UAV Enabled Multi Small Cell Networks. IEEE Transactions on Mobile Computing. https://doi.org/10.1109/TMC.2020.3017137
Privacy preserving in indoor fingerprint localization and radio map expansion
Ghorashi, S. A., Sazdar, A. M., Alikhani, N. and Khonsari, A. 2020. Privacy preserving in indoor fingerprint localization and radio map expansion. Peer-to-Peer Networking and Applications. 14, p. 121–134. https://doi.org/10.1007/s12083-020-00950-1
A Low-complexity trajectory privacy preservation approach for indoor fingerprinting positioning systems
Sazdar, A. M., Ghorashi, S. A., Moghtadaiee, V., Khonsari, A. and Windridge, D. 2020. A Low-complexity trajectory privacy preservation approach for indoor fingerprinting positioning systems. Journal of Information Security and Applications. 53 (Art. 102515). https://doi.org/10.1016/j.jisa.2020.102515
Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach
Nabati, M., Navidan, H., Shahbazian, R., Ghorashi, S. A. and Windridge, D. 2020. Using Synthetic Data to Enhance the Accuracy of Fingerprint-Based Localization: A Deep Learning Approach. IEEE Sensors Letters. 4 (Art. 6000204). https://doi.org/10.1109/LSENS.2020.2971555
Power Allocation for D2D Communications Using Max-Min Message-Passing Algorithm
Kazemi Rashed, S, Asvadi, R., Rajabi, S., Ghorashi, S. A. and Martini, M. G. 2020. Power Allocation for D2D Communications Using Max-Min Message-Passing Algorithm. IEEE Transactions on Vehicular Technology. 69 (8), pp. 8443-8458. https://doi.org/10.1109/TVT.2020.2995534
Throughput Improvement by Mode Selection in Hybrid Duplex Wireless Networks
Mousavinasab, B., Gazestani, A. H., Ghorashi, S. A. and Shikh-Bahaei, M. 2020. Throughput Improvement by Mode Selection in Hybrid Duplex Wireless Networks. Wireless Networks. 26, p. 3687–3699. https://doi.org/10.1007/s11276-020-02286-3
New Reconstructed Database for Cost Reduction in Indoor Fingerprinting Localization
Moghatdaiee, V., Ghorashi, S. and Ghavami, G. 2019. New Reconstructed Database for Cost Reduction in Indoor Fingerprinting Localization. IEEE Access. 7, pp. 104462-104477. https://doi.org/10.1109/ACCESS.2019.2932024