Concentric joint connectors for form-changing space frames

Conference paper


Harkin, P., Vaidyanathan, R. and Morad, S. 2019. Concentric joint connectors for form-changing space frames. SEMC 2019: 7th International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa 02 - 04 Sep 2019 CRC Press. https://doi.org/10.1201/9780429426506-170
AuthorsHarkin, P., Vaidyanathan, R. and Morad, S.
TypeConference paper
Abstract

This paper presents a novel joint design for use in form-changing structural frames. These structures are comprised of multiple struts, arranged in a geometrically stable array, connected at their end points via the joints. Each strut, acting as part of a truss, can change in length (telescope), and thus their combined variations can change the overall form of the frame. The joints enable multiple struts to be connected together and pivot around each node point. The joints have near-perfect concentricity of rotation around the node point, which enables the tension and compression forces of the struts to be resolved in a structurally-efficient manner. The design evolved from an analysis of simple, pure-tension net structures, combined with aspects of rigid space frame structures, to resist compressive forces. Existing joint configurations are analyzed and compared to the novel joint. Several applications of form-changing structural frames are noted, to demonstrate the advantages of using such joint connectors in these frames; one is a variable-geometry mount for a surgical device, for Imperial College London.

Year2019
ConferenceSEMC 2019: 7th International Conference on Structural Engineering, Mechanics and Computation
PublisherCRC Press
Accepted author manuscript
License
File Access Level
Anyone
Publication dates
Online22 Aug 2019
Publication process dates
Deposited14 Dec 2021
Journal citationpp. 977-982
Book titleAdvances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications
Book editorZingoni, A.
ISBN9780429426506
Digital Object Identifier (DOI)https://doi.org/10.1201/9780429426506-170
Web address (URL)http://www.crcpress.com/9780429426506
Copyright holder© 2019 The Authors
Additional information

This is an Accepted Manuscript of a book chapter published by CRC Press in Advances in Engineering Materials, Structures and Systems: Innovations, Mechanics and Applications on 22 August 2019, available online: http://www.crcpress.com/9780429426506

Permalink -

https://repository.uel.ac.uk/item/8q0x5

Download files


Accepted author manuscript
Concentric joint connectors for form-changing space frames AM.pdf
License: All rights reserved
File access level: Anyone

  • 38
    total views
  • 37
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Export as

Related outputs

Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform
Morad, S., Jaffer, Z. and Dogramadzi, S. 2021. Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform. Journal of Medical Robotics Research. 6 (Art. 2150005). https://doi.org/10.1142/S2424905X21500057
Surgical Robot Platform with a Novel Concentric Joint for Minimally Invasive Procedures
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2021. Surgical Robot Platform with a Novel Concentric Joint for Minimally Invasive Procedures. Journal of Medical Robotics Research. 5 (Art. 2050001). https://doi.org/10.1142/S2424905X20500014
Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery
Georgilas, I., Dagnino, G., Martins, B. A., Tarassoli, P., Morad, S., Georgilas, K., Koehler, P., Atkins, R. and Dogramadzi, S. 2019. Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery. Frontiers in Robotics and AI. 6 (Art. 103). https://doi.org/10.3389/frobt.2019.00103
Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation
Dagnino, G., Georgilas, K., Köhler, P., Morad, S., Gibbons, P., Atkins, R. and Dogramadzi, S. 2017. Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation. 17th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) . Aachen, DE 14 - 17 Jun 2017 Easy Chair. https://doi.org/10.29007/6wtt
Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R. and Dogramadzi, S. 2017. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 12, p. 1383–1397. https://doi.org/10.1007/s11548-017-1602-9
Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R. and Dogramadzi, S. 2017. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures. Annals of Biomedical Engineering. 45, p. 2648–2662. https://doi.org/10.1007/s10439-017-1901-x
Navigation system for robot-assisted intra-articular lower-limb fracture surgery
Dagnino, G., Georgilas, I., Köhler, P., Morad, S., Atkins, R. and Dogramadzi, S. 2016. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 11, p. 1831–1843. https://doi.org/10.1007/s11548-016-1418-z
Modelling and control of a water jet cutting probe for flexible surgical robot
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2015. Modelling and control of a water jet cutting probe for flexible surgical robot. 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, Sweden 24 - 28 Aug 2015 IEEE. https://doi.org/10.1109/CoASE.2015.7294254
Flexible robotic device for spinal surgery
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2014. Flexible robotic device for spinal surgery. 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, Indonesia 05 - 10 Dec 2014 IEEE. https://doi.org/10.1109/ROBIO.2014.7090336
The Shape of the Urine Stream — From Biophysics to Diagnostics
Wheeler, A. P. S., Morad, S., Buchholz, N. and Knight, M. M. 2012. The Shape of the Urine Stream — From Biophysics to Diagnostics. PLOS ONE. 7 (Art. e47133). https://doi.org/10.1371/journal.pone.0047133