Custom Fit Non-Invasive Ventilation Mask with Microclimate Monitor: Preliminary Study

Article


Morad, S. and Lindsay, S. 2024. Custom Fit Non-Invasive Ventilation Mask with Microclimate Monitor: Preliminary Study. International Journal of Engineering and Technology. 16 (2), pp. 104-108. https://doi.org/10.7763/IJET.2024.V16.1263
AuthorsMorad, S. and Lindsay, S.
Abstract

Mask and interface design have been emphasized in previous research in relation to Non-invasive Ventilation (NIV) and pressure ulcer prevention. A number of variables contribute to necrosis, but critical research has shown that the skin-mask interface is the most important. The goal of this study is to determine whether preexisting ventilation mask designs can be modified in order to improve clinical outcomes. A Custom-Fit ventilation Mask (CFM) was created using 3D scanning and printer technology. A disposable, custom-fit cushion has been fabricated in order to integrate with a pre-existing mask. A mask is equipped with embedded sensors that measure the microclimate between the skin and the mask as precisely as possible. Real-time data is plotted and monitored for critical conditions and to identify other key features. A preliminary Temperature-Humidity (T-H) monitoring of the skin-mask interface shows fluctuation trends that could potentially induce PUs. However, there is a less sensitive reaction in the original mask test.

Keywordsembedded sensors; microclimate monitor; pressure ulcers; ventilation mask
JournalInternational Journal of Engineering and Technology
Journal citation16 (2), pp. 104-108
ISSN1793-8235
Year2024
PublisherInternational Journal of Engineering and Technology
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.7763/IJET.2024.V16.1263
Publication dates
Online14 May 2024
Publication process dates
Accepted30 Mar 2024
Deposited11 Jun 2024
Copyright holder© 2024, The Authors
Permalink -

https://repository.uel.ac.uk/item/8xx38

Download files


Publisher's version
IJET-V16N2-1263.pdf
License: CC BY 4.0
File access level: Anyone

  • 25
    total views
  • 6
    total downloads
  • 9
    views this month
  • 1
    downloads this month

Export as

Related outputs

Towards Tactile Sensing of the Epidural Needle into the Spinal Column
Vakulabharanam, S. S. N., Sharif, S. and Morad, S. 2023. Towards Tactile Sensing of the Epidural Needle into the Spinal Column. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391801
Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing
Lebetiou, H., Morad, S., Sharif, S. and Nichols, P. 2023. Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391452
A Novel Mechanical Design of a Wearable Fingertip Haptic Device for Remote Meniscus Palpation
Morad, S., Jaffer, Z. and Dogramadzi, S. 2023. A Novel Mechanical Design of a Wearable Fingertip Haptic Device for Remote Meniscus Palpation. Journal of Medical Robotics Research. 8 (1-2), p. 2350001. https://doi.org/10.1142/S2424905X23500010
Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform
Morad, S., Jaffer, Z. and Dogramadzi, S. 2021. Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform. Journal of Medical Robotics Research. 6 (Art. 2150005). https://doi.org/10.1142/S2424905X21500057
Surgical Robot Platform with a Novel Concentric Joint for Minimally Invasive Procedures
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2021. Surgical Robot Platform with a Novel Concentric Joint for Minimally Invasive Procedures. Journal of Medical Robotics Research. 5 (Art. 2050001). https://doi.org/10.1142/S2424905X20500014
Concentric joint connectors for form-changing space frames
Harkin, P., Vaidyanathan, R. and Morad, S. 2019. Concentric joint connectors for form-changing space frames. SEMC 2019: 7th International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa 02 - 04 Sep 2019 CRC Press. https://doi.org/10.1201/9780429426506-170
Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery
Georgilas, I., Dagnino, G., Martins, B. A., Tarassoli, P., Morad, S., Georgilas, K., Koehler, P., Atkins, R. and Dogramadzi, S. 2019. Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery. Frontiers in Robotics and AI. 6 (Art. 103). https://doi.org/10.3389/frobt.2019.00103
Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation
Dagnino, G., Georgilas, K., Köhler, P., Morad, S., Gibbons, P., Atkins, R. and Dogramadzi, S. 2017. Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation. 17th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) . Aachen, DE 14 - 17 Jun 2017 Easy Chair. https://doi.org/10.29007/6wtt
Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R. and Dogramadzi, S. 2017. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 12, p. 1383–1397. https://doi.org/10.1007/s11548-017-1602-9
Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R. and Dogramadzi, S. 2017. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures. Annals of Biomedical Engineering. 45, p. 2648–2662. https://doi.org/10.1007/s10439-017-1901-x
Navigation system for robot-assisted intra-articular lower-limb fracture surgery
Dagnino, G., Georgilas, I., Köhler, P., Morad, S., Atkins, R. and Dogramadzi, S. 2016. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 11, p. 1831–1843. https://doi.org/10.1007/s11548-016-1418-z
Modelling and control of a water jet cutting probe for flexible surgical robot
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2015. Modelling and control of a water jet cutting probe for flexible surgical robot. 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, Sweden 24 - 28 Aug 2015 IEEE. https://doi.org/10.1109/CoASE.2015.7294254
Flexible robotic device for spinal surgery
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2014. Flexible robotic device for spinal surgery. 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, Indonesia 05 - 10 Dec 2014 IEEE. https://doi.org/10.1109/ROBIO.2014.7090336
The Shape of the Urine Stream — From Biophysics to Diagnostics
Wheeler, A. P. S., Morad, S., Buchholz, N. and Knight, M. M. 2012. The Shape of the Urine Stream — From Biophysics to Diagnostics. PLoS ONE. 7 (Art. e47133). https://doi.org/10.1371/journal.pone.0047133