Active constraint control for the surgical robotic platform with concentric connector joints

Article


Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2024. Active constraint control for the surgical robotic platform with concentric connector joints. Medical Engineering & Physics. 132 (Art. 104236). https://doi.org/10.1016/j.medengphy.2024.104236
AuthorsMorad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R.
Abstract

Robotic minimally invasive surgery (MIS) has changed numerous surgical techniques in the past few years and enhanced their results. Haptic feedback is integrated into robotic surgical systems to restore the surgeon's perception of forces in response to interaction with objects in the surgical environment. The ideal exact emulation of the robot's interaction with its physical environment in free space is a very challenging problem to solve completely. Previously, we introduced the surgical robotic platform (SRP) with a novel concentric connector joint (CCJ). This study aims to develop a haptic control system that integrates an active constraint controller into a surgical robot platform. We have successfully established haptic feedback control for the surgical robot using constraint control and inverse kinematic relationships integrated into the overall positioning structure. A preliminary feasibility study, modelling, and simulation were presented.

JournalMedical Engineering & Physics
Journal citation132 (Art. 104236)
ISSN1350-4533
1873-4030
Year2024
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.medengphy.2024.104236
Publication dates
Online02 Sep 2024
Publication process dates
Accepted02 Sep 2024
Deposited12 Nov 2024
Copyright holder© 2024 The Authors
Permalink -

https://repository.uel.ac.uk/item/8y716

Download files


Publisher's version
1-s2.0-S1350453324001371-main.pdf
License: CC BY 4.0
File access level: Anyone

  • 27
    total views
  • 6
    total downloads
  • 2
    views this month
  • 1
    downloads this month

Export as

Related outputs

A Polymer-based Femoral Stem Implant: Finite Element Analysis Study
Crobu, L., Morad, S. and Sharif, S. 2024. A Polymer-based Femoral Stem Implant: Finite Element Analysis Study. 2024 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. IEEE.
Custom Fit Non-Invasive Ventilation Mask with Microclimate Monitor: Preliminary Study
Morad, S. and Lindsay, S. 2024. Custom Fit Non-Invasive Ventilation Mask with Microclimate Monitor: Preliminary Study. International Journal of Engineering and Technology. 16 (2), pp. 104-108. https://doi.org/10.7763/IJET.2024.V16.1263
Towards Tactile Sensing of the Epidural Needle into the Spinal Column
Vakulabharanam, S. S. N., Sharif, S. and Morad, S. 2023. Towards Tactile Sensing of the Epidural Needle into the Spinal Column. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391801
Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing
Lebetiou, H., Morad, S., Sharif, S. and Nichols, P. 2023. Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391452
A Novel Mechanical Design of a Wearable Fingertip Haptic Device for Remote Meniscus Palpation
Morad, S., Jaffer, Z. and Dogramadzi, S. 2023. A Novel Mechanical Design of a Wearable Fingertip Haptic Device for Remote Meniscus Palpation. Journal of Medical Robotics Research. 8 (1-2), p. 2350001. https://doi.org/10.1142/S2424905X23500010
Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform
Morad, S., Jaffer, Z. and Dogramadzi, S. 2021. Design of a Wearable Fingertip Haptic Device: Investigating Materials of Varying Stiffness for Mapping the Variable Compliance Platform. Journal of Medical Robotics Research. 6 (Art. 2150005). https://doi.org/10.1142/S2424905X21500057
Surgical Robot Platform with a Novel Concentric Joint for Minimally Invasive Procedures
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2021. Surgical Robot Platform with a Novel Concentric Joint for Minimally Invasive Procedures. Journal of Medical Robotics Research. 5 (Art. 2050001). https://doi.org/10.1142/S2424905X20500014
Concentric joint connectors for form-changing space frames
Harkin, P., Vaidyanathan, R. and Morad, S. 2019. Concentric joint connectors for form-changing space frames. SEMC 2019: 7th International Conference on Structural Engineering, Mechanics and Computation. Cape Town, South Africa 02 - 04 Sep 2019 CRC Press. https://doi.org/10.1201/9780429426506-170
Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery
Georgilas, I., Dagnino, G., Martins, B. A., Tarassoli, P., Morad, S., Georgilas, K., Koehler, P., Atkins, R. and Dogramadzi, S. 2019. Design and Evaluation of a Percutaneous Fragment Manipulation Device for Minimally Invasive Fracture Surgery. Frontiers in Robotics and AI. 6 (Art. 103). https://doi.org/10.3389/frobt.2019.00103
Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation
Dagnino, G., Georgilas, K., Köhler, P., Morad, S., Gibbons, P., Atkins, R. and Dogramadzi, S. 2017. Robot-Bone Attachment Device for Robot-Assisted Percutaneous Bone Fragment Manipulation. 17th Annual Meeting of the International Society for Computer Assisted Orthopaedic Surgery (CAOS) . Aachen, DE 14 - 17 Jun 2017 Easy Chair. https://doi.org/10.29007/6wtt
Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R. and Dogramadzi, S. 2017. Intra-operative fiducial-based CT/fluoroscope image registration framework for image-guided robot-assisted joint fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 12, p. 1383–1397. https://doi.org/10.1007/s11548-017-1602-9
Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures
Dagnino, G., Georgilas, I., Morad, S., Gibbons, P., Tarassoli, P., Atkins, R. and Dogramadzi, S. 2017. Image-Guided Surgical Robotic System for Percutaneous Reduction of Joint Fractures. Annals of Biomedical Engineering. 45, p. 2648–2662. https://doi.org/10.1007/s10439-017-1901-x
Navigation system for robot-assisted intra-articular lower-limb fracture surgery
Dagnino, G., Georgilas, I., Köhler, P., Morad, S., Atkins, R. and Dogramadzi, S. 2016. Navigation system for robot-assisted intra-articular lower-limb fracture surgery. International Journal of Computer Assisted Radiology and Surgery. 11, p. 1831–1843. https://doi.org/10.1007/s11548-016-1418-z
Modelling and control of a water jet cutting probe for flexible surgical robot
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2015. Modelling and control of a water jet cutting probe for flexible surgical robot. 2015 IEEE International Conference on Automation Science and Engineering (CASE). Gothenburg, Sweden 24 - 28 Aug 2015 IEEE. https://doi.org/10.1109/CoASE.2015.7294254
Flexible robotic device for spinal surgery
Morad, S., Ulbricht, C., Harkin, P., Chan, J., Parker, K. and Vaidyanathan, R. 2014. Flexible robotic device for spinal surgery. 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014). Bali, Indonesia 05 - 10 Dec 2014 IEEE. https://doi.org/10.1109/ROBIO.2014.7090336
The Shape of the Urine Stream — From Biophysics to Diagnostics
Wheeler, A. P. S., Morad, S., Buchholz, N. and Knight, M. M. 2012. The Shape of the Urine Stream — From Biophysics to Diagnostics. PLoS ONE. 7 (Art. e47133). https://doi.org/10.1371/journal.pone.0047133