Advances and perspectives in engineered cementitious composites: a comprehensive review

Article


Barbhuiya, S., Das, B. B. and Adak, D. 2024. Advances and perspectives in engineered cementitious composites: a comprehensive review. Magazine of Concrete Research. In Press. https://doi.org/10.1680/jmacr.24.00047
AuthorsBarbhuiya, S., Das, B. B. and Adak, D.
Abstract

Engineered Cementitious Composites (ECC) have garnered significant attention within the construction industry due to their exceptional mechanical properties and durability. This thorough review presents a meticulous analysis of the progress and prospects in ECC research. It commences by introducing the background and rationale for investigating ECC, while outlining the objectives of the review. The review provides an encompassing overview of ECC, encompassing its definition, characteristics, historical development, composition, and constituent materials. Emphasis is placed on the examination of ECC's mechanical properties, specifically its flexural behaviour, tensile behaviour, compressive strength, and resistance to environmental factors. Furthermore, the rheological properties of ECC, including workability, flowability, self-healing, crack mitigation, viscosity, and thixotropy, are discussed in detail. The review delves into the influence of fibre reinforcement on ECC, encompassing the types of fibres utilised, their impact on mechanical and structural properties, as well as fibre dispersion and orientation. Additionally, it explores the diverse applications of ECC across various fields, such as structural applications and sustainable building practices. The challenges and limitations associated with ECC, such as cost and availability, are addressed, alongside an exploration of future trends and research directions.

KeywordsEngineered Cementitious Composites (ECC); durability; workability; crack mitigation; fibre reinforcement
JournalMagazine of Concrete Research
Journal citationIn Press
ISSN0024-9831
1751-763X
Year2024
PublisherICE Publishing
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1680/jmacr.24.00047
Publication dates
Online16 May 2024
Publication process dates
Accepted29 Apr 2024
Deposited10 Jul 2024
Copyright holder© 2024, The Author
Copyright informationThis author accepted manuscript is deposited under a Creative Commons Attribution Non-commercial 4.0 International (CC BY-NC) licence. This means that anyone may distribute, adapt, and build upon the work for non-commercial purposes, subject to full attribution. If you wish to use this manuscript for commercial purposes, please contact permissions@emerald.com.
Permalink -

https://repository.uel.ac.uk/item/8xzq5

Download files


Accepted author manuscript
Engineered Cementitious Composites- Revised.pdf
License: CC BY-NC 4.0
File access level: Anyone

  • 17
    total views
  • 127
    total downloads
  • 2
    views this month
  • 44
    downloads this month

Export as

Related outputs

Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives
Barbhuiya, S., Das, B. and Adak, D. 2025. Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives. in: González-Lezcano, R. (ed.) Innovations in Energy Efficient Construction Through Sustainable Materials IGI Global. pp. 207-262
A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry
Barbhuiya, S., Das, B. B. and Adak, D. 2024. A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry. Journal of Environmental Management. 370 (Art. 122702). https://doi.org/10.1016/j.jenvman.2024.122702
Resistance to acid, alkali, chloride, and carbonation in ternary blended high-volume mineral admixed concrete
Das, B. B., Black, L., Barbhuiya, S., Snehal, K. and Sumukh, E. P. 2024. Resistance to acid, alkali, chloride, and carbonation in ternary blended high-volume mineral admixed concrete. Journal of Sustainable Cement-Based Materials. p. In Press. https://doi.org/10.1080/21650373.2024.2405979
Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives
Barbhuiya, S., Das, B. B. and Adak, D. 2024. Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives. Journal of Environmental Management. 359 (Art. 121052). https://doi.org/10.1016/j.jenvman.2024.121052
Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates
Trivedi, S. S., Dixit, K., Das, B. B. and Barbhuiya, S. 2024. Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates. Journal of Testing and Evaluation. 52 (4). https://doi.org/10.1520/JTE20230511
Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar
Sumukh, E. P., Das, B. B. and Barbhuiya, S. 2024. Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar. Advances in Civil Engineering Materials. 13 (1), pp. 50-75. https://doi.org/10.1520/ACEM20230031
Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations
Barbhuiya, S., Das, B. B., Qureshi, T. and Adak, D. 2024. Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations. Journal of Environmental Management. 356 (Art. 120712). https://doi.org/10.1016/j.jenvman.2024.120712
Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products
Sumukh, E., Das, B. and Barbhuiya, S. 2024. Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products. International Journal of Civil Engineering. 22, pp. 1137-1158. https://doi.org/10.1007/s40999-024-00950-9
A review of fracture propagation in concrete: fundamentals, experimental techniques, modelling and applications
Barbhuiya, S., Das, B. and Kanavaris, F. 2024. A review of fracture propagation in concrete: fundamentals, experimental techniques, modelling and applications. Magazine of Concrete Research. 76 (10), pp. 482-514. https://doi.org/10.1680/jmacr.23.00143
Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development
Barbhuiya, S., Kanavaris, F., Das, B. and Idrees, M. 2024. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering. 86 (Art.108861). https://doi.org/10.1016/j.jobe.2024.108861
Biochar-concrete: A comprehensive review of properties, production and sustainability
Barbhuiya, S., Das, B. B. and Kanavaris, F. 2024. Biochar-concrete: A comprehensive review of properties, production and sustainability. Case Studies in Construction Materials. 20 (Art. e02859). https://doi.org/10.1016/j.cscm.2024.e02859
Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability
Barbhuiya, S., Das, B. B. and Idrees, M. 2024. Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability. Journal of Building Engineering. 82 (Art. 108302). https://doi.org/10.1016/j.jobe.2023.108302
Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete
Trivedi, S. S., Sarangi, D., Das, B. B. and Barbhuiya, S. 2023. Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete. Construction and Building Materials. 409 (Art. 133993). https://doi.org/10.1016/j.conbuildmat.2023.133993
Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar
Snehal, K., Das, B. B. and Barbhuiya, S. 2023. Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar. Cement and Concrete Composites. 141 (Art. 105125). https://doi.org/10.1016/j.cemconcomp.2023.105125
Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions
Barbhuiya, S. and Das, B.B. 2023. Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions. Journal of Building Engineering. 76 (Art. 107267). https://doi.org/10.1016/j.jobe.2023.107267
Nanoindentation and nano-scratch testing on cement paste
Barbhuiya, S. and Das, B. B. 2023. Nanoindentation and nano-scratch testing on cement paste. Construction Materials. 177 (2), pp. 78-86. https://doi.org/10.1680/jcoma.22.00054
Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications
Barbhuiya, S. and Das, B. B. 2023. Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications. Case Studies in Construction Materials. 19 (Art. e02312). https://doi.org/10.1016/j.cscm.2023.e02312
Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS
Sharath, B. P., Snehal, K., Das, B. N. and Barbhuiya, S. 2023. Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS. Journal of Materials in Civil Engineering. 35 (11), p. 04023423. https://doi.org/10.1061/JMCEE7.MTENG-15200
A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives
Barbhuiya, S., Jivkov, A. and Das, B. B. 2023. A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives. Construction and Building Materials. 496 (Art. 133472). https://doi.org/10.1016/j.conbuildmat.2023.133472
Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges
Barbhuiya, S. and Sharif, S. 2023. Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391485
Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making
Barbhuiya, S. and Das, B. B. 2023. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Studies in Construction Materials. 19 (Art. e02326). https://doi.org/10.1016/j.cscm.2023.e02326
A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste
Trivedi, S. S., Snehal, K., Das, B. B. and Barbhuiya, S. 2023. A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste. Construction and Building Materials. 393 (Art. 132125). https://doi.org/10.1016/j.conbuildmat.2023.132125
Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin
Barbhuiya, S. and Pang, E. 2022. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials. 15 (Art. 3732). https://doi.org/10.3390/ma15103732
A comprehensive review on the use of hemp in concrete
Barbhuiya, S. and Bhusan Das, B. 2022. A comprehensive review on the use of hemp in concrete. Construction and Building Materials. 341 (Art. 127857). https://doi.org/10.1016/j.conbuildmat.2022.127857
Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials
Snehal, K., Das, B. B. and Barbhuiya, S. 2022. Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials. Construction and Building Materials. 335 (Art. 127467). https://doi.org/10.1016/j.conbuildmat.2022.127467