Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products

Article


Sumukh, E., Das, B. and Barbhuiya, S. 2024. Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products. International Journal of Civil Engineering. 22, pp. 1137-1158. https://doi.org/10.1007/s40999-024-00950-9
AuthorsSumukh, E., Das, B. and Barbhuiya, S.
Abstract

The present research assists in resolving the issues allied with the disposal of industrial solid wastes/industrial by-products (IBPs) by developing sustainable IBPs based cement mortars. The applicability of IBPs as a feasible alternative to river sand in cement mortar has been evaluated by investigating the synergy among the ingredients, resulting engineering properties and microstructural developments at early and late curing ages. The study could effectively substitute 30% volume of river sand with bottom ash and 50% in the case of slag sand mortars. The experimental outcomes disclose that the practice of IBPs as fine aggregate enhances the engineering properties of mortar and the optimum replacement level lies at 10% and 40% usage of bottom ash and slag sand, respectively. The advanced characterization studies and particle packing density illustrate the refinement of pores by void filing action and accumulation of additional hydration products through secondary hydration reactions. The consumption of portlandite followed by increased hydration products formation observed through thermogravimetric analysis, X-ray diffraction analysis and energy dispersive X-ray spectroscopy that confirmed the contribution of finer fractions of IBPs to secondary hydration reactions. This constructive development was also observed from the lowering of wavenumber corresponding to Si-O-Si/Al vibration bands in Fourier transform infrared spectroscopy spectra. The improved microstructure resulted in enhancing the compressive strength by 9.01% and 18.18% in optimized bottom ash and slag sand mortars, respectively at the curing age of 120 days. Similarly, the water absorption reduced by 1.03% and 1.24% in bottom ash and slag sand mortars, respectively.

Keywordsindustrial by-products; mortar; hydration; particle packing; microstructure; sustainability
JournalInternational Journal of Civil Engineering
Journal citation22, pp. 1137-1158
ISSN1735-0522
2383-3874
Year2024
PublisherSpringer
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1007/s40999-024-00950-9
Publication dates
Online20 Mar 2024
PrintJul 2024
Publication process dates
Accepted04 Feb 2024
Deposited20 Mar 2024
Copyright holder© 2024, The Authors
Additional information

This version of the article has been accepted for publication, after peer review (when applicable) and is subject to Springer Nature’s AM terms of use, but is not the Version of Record and does not reflect post-acceptance improvements, or any corrections. The final version of record is available here: https://doi.org/10.1007/s40999-024-00950-9

Permalink -

https://repository.uel.ac.uk/item/8x73q

Restricted files

Accepted author manuscript

  • 76
    total views
  • 2
    total downloads
  • 8
    views this month
  • 0
    downloads this month

Export as

Related outputs

Carbon Capture Efficiency of Ultrafine Cementitious Substituents and Fine Aggregate Alternatives Subjected to Accelerated CO2 Curing
Trivedi, S. S., Ansari, M. F., Goud, P. K. K., Joy, S., Das, B. B. and Barbhuiya, S. 2025. Carbon Capture Efficiency of Ultrafine Cementitious Substituents and Fine Aggregate Alternatives Subjected to Accelerated CO2 Curing. Journal of Building Engineering. 99 (Art. 111655). https://doi.org/10.1016/j.jobe.2024.111655
Energy storage potential of cementitious materials: Advances, challenges and future Directions
Barbhuiya, S., Das, B. and Adak, D. 2025. Energy storage potential of cementitious materials: Advances, challenges and future Directions. Energy and Buildings. 327 (Art. 115063). https://doi.org/10.1016/j.enbuild.2024.115063
Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives
Barbhuiya, S., Das, B. and Adak, D. 2025. Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives. in: González-Lezcano, R. (ed.) Innovations in Energy Efficient Construction Through Sustainable Materials IGI Global. pp. 207-262
Integrating Machine Learning with Concrete Science: Bridging Traditional Testing and Advanced Predictive Modelling
Barbhuiya, S. and Sharif, S. 2024. Integrating Machine Learning with Concrete Science: Bridging Traditional Testing and Advanced Predictive Modelling. 2024 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. IEEE.
Crumb Rubber as an Eco-Friendly Aggregate in Sustainable Concrete: Properties, Integration and Future Perspectives
Barbhuiya, S. 2024. Crumb Rubber as an Eco-Friendly Aggregate in Sustainable Concrete: Properties, Integration and Future Perspectives. in: Khan, A. H., Akhtar, M. N. and Bani-Hani, K. A. (ed.) Recent Developments and Innovations in the Sustainable Production of Concrete Elsevier. pp. 257-331
Performance of construction and demolition waste as recycled aggregates in concrete – review
Trivedi, S.S., Das, B.B. and Barbhuiya, S. 2024. Performance of construction and demolition waste as recycled aggregates in concrete – review. Construction Materials. p. In Press. https://doi.org/10.1680/jcoma.23.00030
Enhancing mechanical strength and microstructural properties of alkali-activated systems through nano graphene oxide dispersion and polycarboxylate ether admixture
Marbaniang, D. F., Adak, D., Kar, A., Barbhuiya, S., Chottemada, P. G. and Marthong, C. 2024. Enhancing mechanical strength and microstructural properties of alkali-activated systems through nano graphene oxide dispersion and polycarboxylate ether admixture. Construction and Building Materials. 453 (Art. 139004). https://doi.org/10.1016/j.conbuildmat.2024.139004
A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications
Barbhuiya, S., Das, B. B., Norman, P. and Qureshi, T. 2024. A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications. Structural Concrete. p. In Press. https://doi.org/10.1002/suco.202400519
A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry
Barbhuiya, S., Das, B. B. and Adak, D. 2024. A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry. Journal of Environmental Management. 370 (Art. 122702). https://doi.org/10.1016/j.jenvman.2024.122702
Resistance to acid, alkali, chloride, and carbonation in ternary blended high-volume mineral admixed concrete
Das, B. B., Black, L., Barbhuiya, S., Snehal, K. and Sumukh, E. P. 2024. Resistance to acid, alkali, chloride, and carbonation in ternary blended high-volume mineral admixed concrete. Journal of Sustainable Cement-Based Materials. 13 (11), pp. 1685-1706. https://doi.org/10.1080/21650373.2024.2405979
Advances and perspectives in engineered cementitious composites: a comprehensive review
Barbhuiya, S., Das, B. B. and Adak, D. 2024. Advances and perspectives in engineered cementitious composites: a comprehensive review. Magazine of Concrete Research. In Press. https://doi.org/10.1680/jmacr.24.00047
Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives
Barbhuiya, S., Das, B. B. and Adak, D. 2024. Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives. Journal of Environmental Management. 359 (Art. 121052). https://doi.org/10.1016/j.jenvman.2024.121052
Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates
Trivedi, S. S., Dixit, K., Das, B. B. and Barbhuiya, S. 2024. Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates. Journal of Testing and Evaluation. 52 (4). https://doi.org/10.1520/JTE20230511
Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar
Sumukh, E. P., Das, B. B. and Barbhuiya, S. 2024. Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar. Advances in Civil Engineering Materials. 13 (1), pp. 50-75. https://doi.org/10.1520/ACEM20230031
Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations
Barbhuiya, S., Das, B. B., Qureshi, T. and Adak, D. 2024. Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations. Journal of Environmental Management. 356 (Art. 120712). https://doi.org/10.1016/j.jenvman.2024.120712
A review of fracture propagation in concrete: fundamentals, experimental techniques, modelling and applications
Barbhuiya, S., Das, B. and Kanavaris, F. 2024. A review of fracture propagation in concrete: fundamentals, experimental techniques, modelling and applications. Magazine of Concrete Research. 76 (10), pp. 482-514. https://doi.org/10.1680/jmacr.23.00143
Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development
Barbhuiya, S., Kanavaris, F., Das, B. and Idrees, M. 2024. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering. 86 (Art.108861). https://doi.org/10.1016/j.jobe.2024.108861
Biochar-concrete: A comprehensive review of properties, production and sustainability
Barbhuiya, S., Das, B. B. and Kanavaris, F. 2024. Biochar-concrete: A comprehensive review of properties, production and sustainability. Case Studies in Construction Materials. 20 (Art. e02859). https://doi.org/10.1016/j.cscm.2024.e02859
Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability
Barbhuiya, S., Das, B. B. and Idrees, M. 2024. Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability. Journal of Building Engineering. 82 (Art. 108302). https://doi.org/10.1016/j.jobe.2023.108302
Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete
Trivedi, S. S., Sarangi, D., Das, B. B. and Barbhuiya, S. 2023. Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete. Construction and Building Materials. 409 (Art. 133993). https://doi.org/10.1016/j.conbuildmat.2023.133993
Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar
Snehal, K., Das, B. B. and Barbhuiya, S. 2023. Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar. Cement and Concrete Composites. 141 (Art. 105125). https://doi.org/10.1016/j.cemconcomp.2023.105125
Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions
Barbhuiya, S. and Das, B.B. 2023. Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions. Journal of Building Engineering. 76 (Art. 107267). https://doi.org/10.1016/j.jobe.2023.107267
Nanoindentation and nano-scratch testing on cement paste
Barbhuiya, S. and Das, B. B. 2023. Nanoindentation and nano-scratch testing on cement paste. Construction Materials. 177 (2), pp. 78-86. https://doi.org/10.1680/jcoma.22.00054
Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications
Barbhuiya, S. and Das, B. B. 2023. Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications. Case Studies in Construction Materials. 19 (Art. e02312). https://doi.org/10.1016/j.cscm.2023.e02312
Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS
Sharath, B. P., Snehal, K., Das, B. N. and Barbhuiya, S. 2023. Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS. Journal of Materials in Civil Engineering. 35 (11), p. 04023423. https://doi.org/10.1061/JMCEE7.MTENG-15200
A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives
Barbhuiya, S., Jivkov, A. and Das, B. B. 2023. A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives. Construction and Building Materials. 496 (Art. 133472). https://doi.org/10.1016/j.conbuildmat.2023.133472
Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges
Barbhuiya, S. and Sharif, S. 2023. Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391485
Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making
Barbhuiya, S. and Das, B. B. 2023. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Studies in Construction Materials. 19 (Art. e02326). https://doi.org/10.1016/j.cscm.2023.e02326
A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste
Trivedi, S. S., Snehal, K., Das, B. B. and Barbhuiya, S. 2023. A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste. Construction and Building Materials. 393 (Art. 132125). https://doi.org/10.1016/j.conbuildmat.2023.132125
Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin
Barbhuiya, S. and Pang, E. 2022. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials. 15 (Art. 3732). https://doi.org/10.3390/ma15103732
A comprehensive review on the use of hemp in concrete
Barbhuiya, S. and Bhusan Das, B. 2022. A comprehensive review on the use of hemp in concrete. Construction and Building Materials. 341 (Art. 127857). https://doi.org/10.1016/j.conbuildmat.2022.127857
Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials
Snehal, K., Das, B. B. and Barbhuiya, S. 2022. Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials. Construction and Building Materials. 335 (Art. 127467). https://doi.org/10.1016/j.conbuildmat.2022.127467