Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS

Article


Sharath, B. P., Snehal, K., Das, B. N. and Barbhuiya, S. 2023. Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS. Journal of Materials in Civil Engineering. 35 (11), p. 04023423. https://doi.org/10.1061/JMCEE7.MTENG-15200
AuthorsSharath, B. P., Snehal, K., Das, B. N. and Barbhuiya, S.
Abstract

This experimental research investigates the influence of geopolymerization factors such as Na₂O dosages, water and mineral admixture [bentonite (BT), burnt lime (BL), and ground granulated blast furnace slag (GGBS)] on physiomechanical properties of the pelletized fly ash (FA)–based aggregates. Taguchi’s L₉ orthogonal array was adopted to design the mixing ratios for three kinds of fly ash–based aggregates (in the combinations of FA-BT, FA-BL, and FA-GGBS). The degree of geopolymerization of the produced aggregates was characterized using thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), and a scanning electron microscope (SEM). Most influential response indices in the production of pelletized aggregates were identified using gray relational analysis. The physiomechanical characteristics of the fly-ash aggregates were significantly improved by admixing BL than that of GGBS and BT. However, pelletization efficiency was seen to be superior for GGBS-substituted fly-ash aggregates. The quantified amount of hydration products, i.e., sodium alumino-silicate hydrate (N-A-S-H)/calcium alumino-silicate hydrate (C-A-S-H) for fly ash–based aggregates intensified on increasing Na₂O and mineral admixture dosages. The results strongly suggest the existence of a linear relationship between the quantified amount of N-A-S-H/C-A-S-H and individual pellet strength of produced aggregate. The FTIR spectrum showed strong and broadened bands of Si-O terminal for all types of aggregates, representing the conversion of unreacted minerals to chains of aluminosilicate gel (geopolymerized hydration product). Further, it can also be inferred from gray relational analysis that among all other factors, Na₂O content significantly impacted the engineering properties of produced fly ash–based aggregates.

KeywordsFly ash; Geopolymerization; Pellets; Sustainability; Admixtures; Response indices; Gray relational analysis; Thermogravimetric analysis (TGA); Fourier transform infrared spectroscopy (FTIR)
JournalJournal of Materials in Civil Engineering
Journal citation35 (11), p. 04023423
ISSN1943-5533
Year2023
PublisherAmerican Society of Civil Engineers (ASCE)
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1061/JMCEE7.MTENG-15200
Publication dates
Online04 Sep 2023
Print01 Nov 2023
Publication process dates
Accepted10 Apr 2023
Deposited09 Oct 2023
Copyright holder© 2023, American Society of Civil Engineers
Additional information

This material may be downloaded for personal use only. Any other use requires prior permission of the American Society of Civil Engineers. This material may be found at https://ascelibrary.org/doi/10.1061/JMCEE7.MTENG-15200

Permalink -

https://repository.uel.ac.uk/item/8wq6w

Download files


Accepted author manuscript
Revised Manuscript_ASCE_Non Highlighted_30-12-2022.pdf
License: All rights reserved
File access level: Anyone

  • 43
    total views
  • 28
    total downloads
  • 2
    views this month
  • 3
    downloads this month

Export as

Related outputs

Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar
Sumukh, E. P., Das, B. B. and Barbhuiya, S. 2024. Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar. Advances in Civil Engineering Materials. 13 (1), pp. 50-75. https://doi.org/10.1520/ACEM20230031
Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations
Barbhuiya, S., Das, B. B., Qureshi, T. and Adak, D. 2024. Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations. Journal of Environmental Management. 356 (Art. 120712). https://doi.org/10.1016/j.jenvman.2024.120712
Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products
Sumukh, E., Das, B. and Barbhuiya, S. 2024. Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products. International Journal of Civil Engineering. In Press. https://doi.org/10.1007/s40999-024-00950-9
A review on Fracture Propagation in Concrete: Fundamentals, Experimental Techniques, Modelling and Applications
Barbhuiya, S., Das, B. and Kanavaris, F. 2024. A review on Fracture Propagation in Concrete: Fundamentals, Experimental Techniques, Modelling and Applications . Magazine of Concrete Research. 76 (10), pp. 482-514. https://doi.org/10.1680/jmacr.23.00143
Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development
Barbhuiya, S., Kanavaris, F., Das, B. and Idrees, M. 2024. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering. 86 (Art.108861). https://doi.org/10.1016/j.jobe.2024.108861
Biochar-concrete: A comprehensive review of properties, production and sustainability
Barbhuiya, S., Das, B. B. and Kanavaris, F. 2024. Biochar-concrete: A comprehensive review of properties, production and sustainability. Case Studies in Construction Materials. 20 (Art. e02859). https://doi.org/10.1016/j.cscm.2024.e02859
Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability
Barbhuiya, S., Das, B. B. and Idrees, M. 2024. Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability. Journal of Building Engineering. 82 (Art. 108302). https://doi.org/10.1016/j.jobe.2023.108302
Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete
Trivedi, S. S., Sarangi, D., Das, B. B. and Barbhuiya, S. 2023. Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete. Construction and Building Materials. 409 (Art. 133993). https://doi.org/10.1016/j.conbuildmat.2023.133993
Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar
Snehal, K., Das, B. B. and Barbhuiya, S. 2023. Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar. Cement and Concrete Composites. 141 (Art. 105125). https://doi.org/10.1016/j.cemconcomp.2023.105125
Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions
Barbhuiya, S. and Das, B.B. 2023. Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions. Journal of Building Engineering. 76 (Art. 107267). https://doi.org/10.1016/j.jobe.2023.107267
Nanoindentation and nano-scratch testing on cement paste
Barbhuiya, S. and Das, B. B. 2023. Nanoindentation and nano-scratch testing on cement paste. Construction Materials. 177 (2), pp. 78-86. https://doi.org/10.1680/jcoma.22.00054
Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications
Barbhuiya, S. and Das, B. B. 2023. Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications. Case Studies in Construction Materials. 19 (Art. e02312). https://doi.org/10.1016/j.cscm.2023.e02312
A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives
Barbhuiya, S., Jivkov, A. and Das, B. B. 2023. A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives. Construction and Building Materials. 496 (Art. 133472). https://doi.org/10.1016/j.conbuildmat.2023.133472
Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges
Barbhuiya, S. and Sharif, S. 2023. Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391485
Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making
Barbhuiya, S. and Das, B. B. 2023. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Studies in Construction Materials. 19 (Art. e02326). https://doi.org/10.1016/j.cscm.2023.e02326
A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste
Trivedi, S. S., Snehal, K., Das, B. B. and Barbhuiya, S. 2023. A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste. Construction and Building Materials. 393 (Art. 132125). https://doi.org/10.1016/j.conbuildmat.2023.132125
Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin
Barbhuiya, S. and Pang, E. 2022. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials. 15 (Art. 3732). https://doi.org/10.3390/ma15103732
A comprehensive review on the use of hemp in concrete
Barbhuiya, S. and Bhusan Das, B. 2022. A comprehensive review on the use of hemp in concrete. Construction and Building Materials. 341 (Art. 127857). https://doi.org/10.1016/j.conbuildmat.2022.127857
Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials
Snehal, K., Das, B. B. and Barbhuiya, S. 2022. Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials. Construction and Building Materials. 335 (Art. 127467). https://doi.org/10.1016/j.conbuildmat.2022.127467