Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications

Article


Barbhuiya, S. and Das, B. B. 2023. Water-soluble polymers in cementitious materials: A comprehensive review of roles, mechanisms and applications. Case Studies in Construction Materials. 19 (Art. e02312). https://doi.org/10.1016/j.cscm.2023.e02312
AuthorsBarbhuiya, S. and Das, B. B.
Abstract

This review paper provides an extensive assessment of the diverse roles played by water-soluble polymers in cementitious materials. It commences with an introduction that provides a thorough overview of the background, objectives and limitations of the review. Subsequently, the various types of water-soluble polymers, encompassing natural, semi-synthetic and synthetic variants, are examined in detail, alongside an exploration of their working mechanisms within cementitious materials. Mechanisms discussed include entanglement and association, adsorption and complexation, as well as bridging. Furthermore, this review delves into the influence of watersoluble polymers on the microstructure, fresh properties, mechanical properties and durability of cementitious materials. A comprehensive analysis of the challenges and opportunities associated with the implementation of water-soluble polymers in cementitious materials is also presented, followed by a summary of the key findings and recommendations for both practical applications and future research endeavors. Overall, this review provides invaluable insights for researchers and practitioners, shedding light on the multifaceted functions of water-soluble polymers in cementitious materials.

KeywordsWater-soluble polymers; Cementitious materials; Adsorption; Microstructure; Durability
JournalCase Studies in Construction Materials
Journal citation19 (Art. e02312)
ISSN2214-5095
Year2023
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.cscm.2023.e02312
Publication dates
Online17 Jul 2023
PrintDec 2023
Publication process dates
Accepted13 Jul 2023
Deposited02 Oct 2023
Copyright holder© 2023, The Authors
Permalink -

https://repository.uel.ac.uk/item/8wq6x

Download files

  • 282
    total views
  • 413
    total downloads
  • 24
    views this month
  • 12
    downloads this month

Export as

Related outputs

Carbon Capture Efficiency of Ultrafine Cementitious Substituents and Fine Aggregate Alternatives Subjected to Accelerated CO2 Curing
Trivedi, S. S., Ansari, M. F., Goud, P. K. K., Joy, S., Das, B. B. and Barbhuiya, S. 2025. Carbon Capture Efficiency of Ultrafine Cementitious Substituents and Fine Aggregate Alternatives Subjected to Accelerated CO2 Curing. Journal of Building Engineering. 99 (Art. 111655). https://doi.org/10.1016/j.jobe.2024.111655
Energy storage potential of cementitious materials: Advances, challenges and future Directions
Barbhuiya, S., Das, B. and Adak, D. 2025. Energy storage potential of cementitious materials: Advances, challenges and future Directions. Energy and Buildings. 327 (Art. 115063). https://doi.org/10.1016/j.enbuild.2024.115063
Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives
Barbhuiya, S., Das, B. and Adak, D. 2025. Phase Change Materials in Buildings: Fundamentals, Applications, and Future Perspectives. in: González-Lezcano, R. (ed.) Innovations in Energy Efficient Construction Through Sustainable Materials IGI Global. pp. 207-262
Integrating Machine Learning with Concrete Science: Bridging Traditional Testing and Advanced Predictive Modelling
Barbhuiya, S. and Sharif, S. 2024. Integrating Machine Learning with Concrete Science: Bridging Traditional Testing and Advanced Predictive Modelling. 2024 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. IEEE.
Crumb Rubber as an Eco-Friendly Aggregate in Sustainable Concrete: Properties, Integration and Future Perspectives
Barbhuiya, S. 2024. Crumb Rubber as an Eco-Friendly Aggregate in Sustainable Concrete: Properties, Integration and Future Perspectives. in: Khan, A. H., Akhtar, M. N. and Bani-Hani, K. A. (ed.) Recent Developments and Innovations in the Sustainable Production of Concrete Elsevier. pp. 257-331
Performance of construction and demolition waste as recycled aggregates in concrete – review
Trivedi, S.S., Das, B.B. and Barbhuiya, S. 2024. Performance of construction and demolition waste as recycled aggregates in concrete – review. Construction Materials. p. In Press. https://doi.org/10.1680/jcoma.23.00030
Enhancing mechanical strength and microstructural properties of alkali-activated systems through nano graphene oxide dispersion and polycarboxylate ether admixture
Marbaniang, D. F., Adak, D., Kar, A., Barbhuiya, S., Chottemada, P. G. and Marthong, C. 2024. Enhancing mechanical strength and microstructural properties of alkali-activated systems through nano graphene oxide dispersion and polycarboxylate ether admixture. Construction and Building Materials. 453 (Art. 139004). https://doi.org/10.1016/j.conbuildmat.2024.139004
A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications
Barbhuiya, S., Das, B. B., Norman, P. and Qureshi, T. 2024. A comprehensive review of radiation shielding concrete: Properties, design, evaluation, and applications. Structural Concrete. p. In Press. https://doi.org/10.1002/suco.202400519
A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry
Barbhuiya, S., Das, B. B. and Adak, D. 2024. A comprehensive review on integrating sustainable practices and circular economy principles in concrete industry. Journal of Environmental Management. 370 (Art. 122702). https://doi.org/10.1016/j.jenvman.2024.122702
Resistance to acid, alkali, chloride, and carbonation in ternary blended high-volume mineral admixed concrete
Das, B. B., Black, L., Barbhuiya, S., Snehal, K. and Sumukh, E. P. 2024. Resistance to acid, alkali, chloride, and carbonation in ternary blended high-volume mineral admixed concrete. Journal of Sustainable Cement-Based Materials. 13 (11), pp. 1685-1706. https://doi.org/10.1080/21650373.2024.2405979
Advances and perspectives in engineered cementitious composites: a comprehensive review
Barbhuiya, S., Das, B. B. and Adak, D. 2024. Advances and perspectives in engineered cementitious composites: a comprehensive review. Magazine of Concrete Research. In Press. https://doi.org/10.1680/jmacr.24.00047
Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives
Barbhuiya, S., Das, B. B. and Adak, D. 2024. Roadmap to a net-zero carbon cement sector: Strategies, innovations and policy imperatives. Journal of Environmental Management. 359 (Art. 121052). https://doi.org/10.1016/j.jenvman.2024.121052
Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates
Trivedi, S. S., Dixit, K., Das, B. B. and Barbhuiya, S. 2024. Combined Effect of Multistage Processing and Treatment Methods on the Physical, Chemical, and Microstructure Properties of Recycled Concrete Aggregates. Journal of Testing and Evaluation. 52 (4). https://doi.org/10.1520/JTE20230511
Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar
Sumukh, E. P., Das, B. B. and Barbhuiya, S. 2024. Effect of Iron Ore and Copper Ore Tailings on Engineering Properties and Hydration Products of Sustainable Cement Mortar. Advances in Civil Engineering Materials. 13 (1), pp. 50-75. https://doi.org/10.1520/ACEM20230031
Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations
Barbhuiya, S., Das, B. B., Qureshi, T. and Adak, D. 2024. Cement-based solidification of nuclear waste: Mechanisms, formulations and regulatory considerations. Journal of Environmental Management. 356 (Art. 120712). https://doi.org/10.1016/j.jenvman.2024.120712
Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products
Sumukh, E., Das, B. and Barbhuiya, S. 2024. Synergy of Hydration and Microstructural Properties of Sustainable Cement Mortar Supplemented with Industrial By-Products. International Journal of Civil Engineering. 22, pp. 1137-1158. https://doi.org/10.1007/s40999-024-00950-9
A review of fracture propagation in concrete: fundamentals, experimental techniques, modelling and applications
Barbhuiya, S., Das, B. and Kanavaris, F. 2024. A review of fracture propagation in concrete: fundamentals, experimental techniques, modelling and applications. Magazine of Concrete Research. 76 (10), pp. 482-514. https://doi.org/10.1680/jmacr.23.00143
Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development
Barbhuiya, S., Kanavaris, F., Das, B. and Idrees, M. 2024. Decarbonising cement and concrete production: Strategies, challenges and pathways for sustainable development. Journal of Building Engineering. 86 (Art.108861). https://doi.org/10.1016/j.jobe.2024.108861
Biochar-concrete: A comprehensive review of properties, production and sustainability
Barbhuiya, S., Das, B. B. and Kanavaris, F. 2024. Biochar-concrete: A comprehensive review of properties, production and sustainability. Case Studies in Construction Materials. 20 (Art. e02859). https://doi.org/10.1016/j.cscm.2024.e02859
Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability
Barbhuiya, S., Das, B. B. and Idrees, M. 2024. Thermal energy storage in concrete: A comprehensive review on fundamentals, technology and sustainability. Journal of Building Engineering. 82 (Art. 108302). https://doi.org/10.1016/j.jobe.2023.108302
Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete
Trivedi, S. S., Sarangi, D., Das, B. B. and Barbhuiya, S. 2023. Influence of Multi-Stage Processing and Mechano-Chemical Treatments on the Hydration and Microstructure Properties of Recycled Aggregate Concrete. Construction and Building Materials. 409 (Art. 133993). https://doi.org/10.1016/j.conbuildmat.2023.133993
Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar
Snehal, K., Das, B. B. and Barbhuiya, S. 2023. Synergistic effect of nano silica on carbonation resistance of multi-blended cementitious mortar. Cement and Concrete Composites. 141 (Art. 105125). https://doi.org/10.1016/j.cemconcomp.2023.105125
Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions
Barbhuiya, S. and Das, B.B. 2023. Molecular dynamics simulation in concrete research: A systematic review of techniques, models and future directions. Journal of Building Engineering. 76 (Art. 107267). https://doi.org/10.1016/j.jobe.2023.107267
Nanoindentation and nano-scratch testing on cement paste
Barbhuiya, S. and Das, B. B. 2023. Nanoindentation and nano-scratch testing on cement paste. Construction Materials. 177 (2), pp. 78-86. https://doi.org/10.1680/jcoma.22.00054
Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS
Sharath, B. P., Snehal, K., Das, B. N. and Barbhuiya, S. 2023. Influence of Geopolymerization Factors on Sustainable Production of Pelletized Fly Ash–Based Aggregates Admixed with Bentonite, Lime, and GGBS. Journal of Materials in Civil Engineering. 35 (11), p. 04023423. https://doi.org/10.1061/JMCEE7.MTENG-15200
A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives
Barbhuiya, S., Jivkov, A. and Das, B. B. 2023. A review of multi-scale modelling of concrete deterioration: Fundamentals, techniques and perspectives. Construction and Building Materials. 496 (Art. 133472). https://doi.org/10.1016/j.conbuildmat.2023.133472
Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review
Barbhuiya, S., Nepal, J. and Das, B. B . 2023. Properties, compatibility, environmental benefits and future directions of limestone calcined clay cement (LC3) concrete: A review. Journal of Building Engineering. 79 (Ar. 107794). https://doi.org/10.1016/j.jobe.2023.107794
Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges
Barbhuiya, S. and Sharif, S. 2023. Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391485
Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making
Barbhuiya, S. and Das, B. B. 2023. Life Cycle Assessment of construction materials: Methodologies, applications and future directions for sustainable decision-making. Case Studies in Construction Materials. 19 (Art. e02326). https://doi.org/10.1016/j.cscm.2023.e02326
A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste
Trivedi, S. S., Snehal, K., Das, B. B. and Barbhuiya, S. 2023. A comprehensive review towards sustainable approaches on the processing and treatment of construction and demolition waste. Construction and Building Materials. 393 (Art. 132125). https://doi.org/10.1016/j.conbuildmat.2023.132125
Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin
Barbhuiya, S. and Pang, E. 2022. Strength and Microstructure of Geopolymer Based on Fly Ash and Metakaolin. Materials. 15 (Art. 3732). https://doi.org/10.3390/ma15103732
A comprehensive review on the use of hemp in concrete
Barbhuiya, S. and Bhusan Das, B. 2022. A comprehensive review on the use of hemp in concrete. Construction and Building Materials. 341 (Art. 127857). https://doi.org/10.1016/j.conbuildmat.2022.127857
Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials
Snehal, K., Das, B. B. and Barbhuiya, S. 2022. Influence of aggressive exposure on the degradation of nano-silica admixed cementitious mortar integrated with phase change materials. Construction and Building Materials. 335 (Art. 127467). https://doi.org/10.1016/j.conbuildmat.2022.127467