A simplified finite element model for assessing steel fibre reinforced concrete structural performance

Article


Abbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M. 2016. A simplified finite element model for assessing steel fibre reinforced concrete structural performance. Computers and Structures. 173, pp. 31-49. https://doi.org/10.1016/j.compstruc.2016.05.017
AuthorsAbbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M.
Abstract

The present numerical investigation offers evidence concerning the validity and objectivity of the predictions of a simple, yet practical, finite element model concerning the responses of steel fibre reinforced concrete structural elements under static monotonic and cyclic loading. Emphasis is focused on realistically describing the fully brittle tensile behaviour of plain concrete and the contribution of steel fibres on the post-cracking behaviour it exhibits. The good correlation exhibited between the numerical predictions and their experimental counterparts reveals that, despite its simplicity, the subject model is capable of providing realistic predictions concerning the response of steel fibre reinforced concrete structural configurations exhibiting both ductile and brittle modes of failure without requiring recalibration.

JournalComputers and Structures
Journal citation173, pp. 31-49
ISSN0045-7949
Year2016
PublisherElsevier
Accepted author manuscript
License
CC BY-NC-ND
Digital Object Identifier (DOI)https://doi.org/10.1016/j.compstruc.2016.05.017
Publication dates
Print08 Jun 2016
Publication process dates
Deposited03 Jun 2016
Accepted18 May 2016
Copyright information© 2016 Elsevier
LicenseCC BY-NC-ND 3.0
Permalink -

https://repository.uel.ac.uk/item/8508q

Download files

  • 226
    total views
  • 468
    total downloads
  • 0
    views this month
  • 9
    downloads this month

Export as

Related outputs

Rethinking social housing in terms of environmental sustainability: An empirical analysis
Emekci, S. and Abbas, A. 2023. Rethinking social housing in terms of environmental sustainability: An empirical analysis. Građevinar. 75 (11), pp. 1083-1093. https://doi.org/10.14256/JCE.3814.2023
Constitutive model for plain and fiber-reinforced lightweight concrete under compression
Al-Naimi, H. and Abbas, A. 2023. Constitutive model for plain and fiber-reinforced lightweight concrete under compression. Structural Concrete. 24 (6), pp. 7625-7647. https://doi.org/10.1002/suco.202200646
Machine Learning-Based Prediction of Compressive Performance in Circular Concrete Columns Confined with FRP
Dhakal, N., Abbas, A., Ahmed, H. and Sharif, S. 2023. Machine Learning-Based Prediction of Compressive Performance in Circular Concrete Columns Confined with FRP. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391832
Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research
Khairi, S., Sharif, S., Apeagyei, A. and Abbas, A. 2023. Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391677
Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks
Guler, O., Ahmed, H., Abbas, A. and Sharif, S. 2023. Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391555
Development of Low-Carbon Lightweight Concrete Using Pumice as Aggregate and Cement Replacement
Abbas, A., Mahadevan, M., Prajapati, S., Ayati, B. and Kanavaris, F. 2023. Development of Low-Carbon Lightweight Concrete Using Pumice as Aggregate and Cement Replacement. SynerCrete'23 - International RILEM conference on synergising expertise towards sustainability and robustness of cement-based materials and concrete structures. Milos, Greece 14 - 16 Jun 2023 Springer. https://doi.org/10.1007/978-3-031-33187-9_27
Potential of Connected Fully Autonomous Vehicles in Reducing Congestion and Associated Carbon Emissions
Neufville, R., Abdalla, H. and Abbas, A. 2022. Potential of Connected Fully Autonomous Vehicles in Reducing Congestion and Associated Carbon Emissions. Sustainability. 14 (Art. 6910). https://doi.org/10.3390/su14116910
Reducing embodied carbon dioxide of structural concrete with lightweight aggregate
Kanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B. 2021. Reducing embodied carbon dioxide of structural concrete with lightweight aggregate. Proceedings of the ICE - Engineering Sustainability. 175 (2), pp. 75-83. https://doi.org/10.1680/jensu.21.00021
Reducing the carbon footprint of lightweight aggregate concrete
Kanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B. 2020. Reducing the carbon footprint of lightweight aggregate concrete. LowC3 2020. Online 05 - 06 Oct 2020 LowC3, University of Kentucky.
Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete
Al-Naimi, H. and Abbas, A. 2019. Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete. COMPDYN 2019: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete, Greece. 24 - 26 Jun 2019 Institute of Structural Analysis and Antiseismic Research. pp. 4009-4023 https://doi.org/10.7712/120119.7203.19035
Behaviour of steel-fibre-reinforced concrete beams under high-rate loading
Abbas, A., Cotsovos, Demetrios M. and Behinaein, Pegah 2018. Behaviour of steel-fibre-reinforced concrete beams under high-rate loading. Computers and Concrete, An International Journal. 22 (3), pp. 337-353. https://doi.org/10.12989/cac.2018.22.3.337
Shear behaviour of steel-fibre-reinforced concrete simply supported beams
Abbas, A., Syed Mohsin, Sharifah M., Cotsovos, Demetrios M. and Ruiz-Teran, Ana M. 2014. Shear behaviour of steel-fibre-reinforced concrete simply supported beams. Proceedings of the ICE - Structures and Buildings. 167 (9), pp. 544-558.
Statically-Indeterminate SFRC Columns under Cyclic Loads
Abbas, A., Mohsin, Sharifah, Cotsovos, Demetrios and Ruiz-Teran, Ana 2014. Statically-Indeterminate SFRC Columns under Cyclic Loads. Advances in Structural Engineering. 17 (10), pp. 1403-1418.
Seismic response of steel fibre reinforced concrete beam-column joints
Abbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M. 2014. Seismic response of steel fibre reinforced concrete beam-column joints. Engineering Structures. 59 (Feb14), pp. 261-283.