Constitutive Model for Plain and Fibre-Reinforced Lightweight Aggregate Concrete under direct Tension and Pull-out

Article


Al-Naimi, H. K. and Abbas, A. A. 2025. Constitutive Model for Plain and Fibre-Reinforced Lightweight Aggregate Concrete under direct Tension and Pull-out. Fibers. p. In press.
AuthorsAl-Naimi, H. K. and Abbas, A. A.
Abstract

In the present study, a programme of experimental investigations was carried out to ex-amine the direct uniaxial tensile (and pull-out) behaviour of plain and fibre-reinforced lightweight aggregate concrete. The lightweight aggregates were recycled from fly ash waste, also known as Pulverised Fuel Ash (PFA), which is a by-product of coal-fired elec-tricity power stations. Steel fibres were used with different aspect ratios and hooked ends with single, double and triple bends corresponding to DRAMIX steel fibres 3D, 4D and 5D types, respectively. Key parameters such as the concrete compressive strength flck, fibre volume fraction Vf, number of bends nb, embedded length LE and inclination angle ϴf where considered. The fibres were added at volume fractions Vf of 1% and 2% to cover the practical range and a direct tensile test was carried out using a purpose-built pull-out test developed as part of the present study. Thus, the tensile mechanical properties were estab-lished and a generic constitutive tensile stress-crack width  model for both plain and fibrous lightweight concrete was derived and validated against experimental data from the present studies and also previous research found in the literature (including RILEM uniaxial tests) involving different types of lightweight aggregates, concrete strengths and steel fibres. It was concluded that the higher the number of bends nb, volume fraction Vf, and concrete strength flck, the stronger the fibre-matrix interfacial bond and thus the more pronounced the enhancement provided by the fibres to the uniaxial tensile residual strength and ductility in the form of work and fracture energy. A fibre optimisation study was also carried out and design recommendations made.

JournalFibers
Journal citationp. In press
ISSN2079-6439
Year2025
PublisherMDPI
Accepted author manuscript
License
File Access Level
Anyone
Web address (URL)https://www.mdpi.com/journal/fibers
Publication process dates
Accepted12 Jun 2025
Deposited12 Jun 2025
Copyright holder© 2025 The Authors
Permalink -

https://repository.uel.ac.uk/item/8zv53

Download files


Accepted author manuscript
fibers-3570979 - Rev 1.pdf
License: CC BY 4.0
File access level: Anyone

  • 6
    total views
  • 1
    total downloads
  • 6
    views this month
  • 1
    downloads this month

Export as

Related outputs

Rethinking social housing in terms of environmental sustainability: An empirical analysis
Emekci, S. and Abbas, A. 2023. Rethinking social housing in terms of environmental sustainability: An empirical analysis. Građevinar. 75 (11), pp. 1083-1093. https://doi.org/10.14256/JCE.3814.2023
Constitutive model for plain and fiber-reinforced lightweight concrete under compression
Al-Naimi, H. and Abbas, A. 2023. Constitutive model for plain and fiber-reinforced lightweight concrete under compression. Structural Concrete. 24 (6), pp. 7625-7647. https://doi.org/10.1002/suco.202200646
Machine Learning-Based Prediction of Compressive Performance in Circular Concrete Columns Confined with FRP
Dhakal, N., Abbas, A., Ahmed, H. and Sharif, S. 2023. Machine Learning-Based Prediction of Compressive Performance in Circular Concrete Columns Confined with FRP. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391832
Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research
Khairi, S., Sharif, S., Apeagyei, A. and Abbas, A. 2023. Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391677
Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks
Guler, O., Ahmed, H., Abbas, A. and Sharif, S. 2023. Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE. https://doi.org/10.1109/3ICT60104.2023.10391555
Development of Low-Carbon Lightweight Concrete Using Pumice as Aggregate and Cement Replacement
Abbas, A., Mahadevan, M., Prajapati, S., Ayati, B. and Kanavaris, F. 2023. Development of Low-Carbon Lightweight Concrete Using Pumice as Aggregate and Cement Replacement. SynerCrete'23 - International RILEM conference on synergising expertise towards sustainability and robustness of cement-based materials and concrete structures. Milos, Greece 14 - 16 Jun 2023 Springer. https://doi.org/10.1007/978-3-031-33187-9_27
Potential of Connected Fully Autonomous Vehicles in Reducing Congestion and Associated Carbon Emissions
Neufville, R., Abdalla, H. and Abbas, A. 2022. Potential of Connected Fully Autonomous Vehicles in Reducing Congestion and Associated Carbon Emissions. Sustainability. 14 (Art. 6910). https://doi.org/10.3390/su14116910
Reducing embodied carbon dioxide of structural concrete with lightweight aggregate
Kanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B. 2021. Reducing embodied carbon dioxide of structural concrete with lightweight aggregate. Proceedings of the ICE - Engineering Sustainability. 175 (2), pp. 75-83. https://doi.org/10.1680/jensu.21.00021
Reducing the carbon footprint of lightweight aggregate concrete
Kanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B. 2020. Reducing the carbon footprint of lightweight aggregate concrete. LowC3 2020. Online 05 - 06 Oct 2020 LowC3, University of Kentucky.
Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete
Al-Naimi, H. and Abbas, A. 2019. Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete. COMPDYN 2019: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete, Greece. 24 - 26 Jun 2019 Institute of Structural Analysis and Antiseismic Research. pp. 4009-4023 https://doi.org/10.7712/120119.7203.19035
Behaviour of steel-fibre-reinforced concrete beams under high-rate loading
Abbas, A., Cotsovos, Demetrios M. and Behinaein, Pegah 2018. Behaviour of steel-fibre-reinforced concrete beams under high-rate loading. Computers and Concrete, An International Journal. 22 (3), pp. 337-353. https://doi.org/10.12989/cac.2018.22.3.337
A simplified finite element model for assessing steel fibre reinforced concrete structural performance
Abbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M. 2016. A simplified finite element model for assessing steel fibre reinforced concrete structural performance. Computers and Structures. 173, pp. 31-49. https://doi.org/10.1016/j.compstruc.2016.05.017
Shear behaviour of steel-fibre-reinforced concrete simply supported beams
Abbas, A., Syed Mohsin, Sharifah M., Cotsovos, Demetrios M. and Ruiz-Teran, Ana M. 2014. Shear behaviour of steel-fibre-reinforced concrete simply supported beams. Proceedings of the ICE - Structures and Buildings. 167 (9), pp. 544-558.
Statically-Indeterminate SFRC Columns under Cyclic Loads
Abbas, A., Mohsin, Sharifah, Cotsovos, Demetrios and Ruiz-Teran, Ana 2014. Statically-Indeterminate SFRC Columns under Cyclic Loads. Advances in Structural Engineering. 17 (10), pp. 1403-1418.
Seismic response of steel fibre reinforced concrete beam-column joints
Abbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M. 2014. Seismic response of steel fibre reinforced concrete beam-column joints. Engineering Structures. 59 (Feb14), pp. 261-283.