Reducing embodied carbon dioxide of structural concrete with lightweight aggregate

Article


Kanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B. 2021. Reducing embodied carbon dioxide of structural concrete with lightweight aggregate. Proceedings of the ICE - Engineering Sustainability. https://doi.org/10.1680/jensu.21.00021
AuthorsKanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B.
Abstract

An investigation was done into the development of lightweight-aggregate concrete mixes with lower embodied carbon dioxide emissions suitable for structural applications. Production requires the replacement of normal-weight coarse aggregate with a lightweight aggregate. Lytag was considered, which is a good-quality lightweight aggregate manufactured from fly ash. Lightweight-aggregate concrete for structural applications usually contains a high CEM I content owing to the requirements for workability, pumpability and strength. Consequently, its embodied carbon dioxide emissions are generally higher than that of normal-weight concrete. Mixes of LC30/33 class were developed containing up to 60% ground granulated blast-furnace slag, as well as limestone powder, and their fresh and mechanical properties were assessed experimentally. It was found that the embodied carbon dioxide of the investigated mix could be reduced by up to 40% when compared with that of neat CEM I lightweight-aggregate mixes containing Lytag aggregates and to 20% when compared with that of a mix that would be generally used in current practice in the UK containing 40% slag. It was also possible to reduce the CEM I content in the investigated mixes by approximately 40% compared with what would have been normally used.

Journal Proceedings of the ICE - Engineering Sustainability
ISSN1751-7680
Year2021
PublisherICE Publishing (Institute of Civil Engineers)
Accepted author manuscript
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1680/jensu.21.00021
Publication dates
Online10 Aug 2021
Publication process dates
Accepted22 Jul 2021
Deposited18 Aug 2021
Copyright holder© 2021 ICE Publishing
Additional information

The final version of record published in Proceedings of the ICE - Engineering Sustainability is available online: https://doi.org/10.1680/jensu.21.00021.

Permalink -

https://repository.uel.ac.uk/item/89q02

Restricted files

Accepted author manuscript

  • 13
    total views
  • 0
    total downloads
  • 6
    views this month
  • 0
    downloads this month

Export as

Related outputs

Reducing the carbon footprint of lightweight aggregate concrete
Kanavaris, F., Gibbons, O., Walport, E., Shearer, E., Abbas, A., Orr, J. and Marsh, B. 2020. Reducing the carbon footprint of lightweight aggregate concrete. LowC3 2020. Online 05 - 06 Oct 2020 LowC3, University of Kentucky.
Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete
Al-Naimi, H. and Abbas, A. 2019. Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete. COMPDYN 2019: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete, Greece. 24 - 26 Jun 2019 Institute of Structural Analysis and Antiseismic Research. pp. 4009-4023 https://doi.org/10.7712/120119.7203.19035
Behaviour of steel-fibre-reinforced concrete beams under high-rate loading
Abbas, A., Cotsovos, Demetrios M. and Behinaein, Pegah 2018. Behaviour of steel-fibre-reinforced concrete beams under high-rate loading. Computers and Concrete, An International Journal. 22 (3), pp. 337-353. https://doi.org/10.12989/cac.2018.22.3.337
A simplified finite element model for assessing steel fibre reinforced concrete structural performance
Abbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M. 2016. A simplified finite element model for assessing steel fibre reinforced concrete structural performance. Computers and Structures. 173, pp. 31-49. https://doi.org/10.1016/j.compstruc.2016.05.017
Shear behaviour of steel-fibre-reinforced concrete simply supported beams
Abbas, A., Syed Mohsin, Sharifah M., Cotsovos, Demetrios M. and Ruiz-Teran, Ana M. 2014. Shear behaviour of steel-fibre-reinforced concrete simply supported beams. Proceedings of the ICE - Structures and Buildings. 167 (9), pp. 544-558.
Statically-Indeterminate SFRC Columns under Cyclic Loads
Abbas, A., Mohsin, Sharifah, Cotsovos, Demetrios and Ruiz-Teran, Ana 2014. Statically-Indeterminate SFRC Columns under Cyclic Loads. Advances in Structural Engineering. 17 (10), pp. 1403-1418.
Seismic response of steel fibre reinforced concrete beam-column joints
Abbas, A., Syed Mohsin, Sharifah M. and Cotsovos, Demetrios M. 2014. Seismic response of steel fibre reinforced concrete beam-column joints. Engineering Structures. 59 (Feb14), pp. 261-283.