Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete
Conference paper
Al-Naimi, H. and Abbas, A. 2019. Ductility of Steel-Fibre-Reinforced Recycled Lightweight Concrete. COMPDYN 2019: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering. Crete, Greece. 24 - 26 Jun 2019 Institute of Structural Analysis and Antiseismic Research. pp. 4009-4023 https://doi.org/10.7712/120119.7203.19035
Authors | Al-Naimi, H. and Abbas, A. |
---|---|
Type | Conference paper |
Abstract | This work examines experimentally and numerically the influence of steel fibre reinforcement on lightweight aggregate concrete (LWAC). The replacement of conventional aggregates with recycled lightweight ones has several benefits such as reducing the mass of the structure lead-ing to more economical designs (also beneficial under earthquake loading). The experimental project showed that it was possible to produce higher strength to weight ratio of LWAC com-pared to normal weight aggregate concrete (NWAC) as dry densities were approximately 700 Kg/m3 lower for identical characteristic compressive strengths between 40MPa and 30MPa. This could lead to savings in materials, construction and transportation costs making it espe-cially useful and economical for long-span and seismic-resistant structures. Conversely, LWAC is noted for its highly brittle nature due to its associated weak aggregate interlock mechanism which can be typically compensated for by increasing shear reinforcement and dowel action by means of adding higher reinforcement ratios. Nonetheless, this creates sever-al challenges in construction such as congestion of reinforcement in critical regions as well as increased dead loads which render LWAC use counterproductive. Thus, steel fibre rein-forcement emerges as a promising solution where partial or total substitution of conventional transverse reinforcement could become a possibility. This project carries out examination of the effectiveness of hooked-end steel fibre reinforcement with fibre volume fractions of Vf = 1% and Vf = 2%. The experimental investigation includes the study of direct uniaxial com-pression and tension (unique pullout test) and indirect splitting and flexural tensile tests. Moreover, a nonlinear finite element study has been carried out using ABAQUS to model the experiments using CDP. Currently, there is no international standards or design guidelines for steel fibre reinforced lightweight concrete (SFRLC). This project will help address that and lead to sustainable and innovative seismic design solutions in the future. |
Year | 2019 |
Conference | COMPDYN 2019: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering |
Publisher | Institute of Structural Analysis and Antiseismic Research |
File | License File Access Level Anyone |
Publication dates | |
Online | Jun 2019 |
Publication process dates | |
Deposited | 25 Jul 2019 |
Book title | COMPDYN 2019 Proceedings Volume 3: 7th International Conference on Computational Methods in Structural Dynamics and Earthquake Engineering |
Book editor | Papadrakakis, M. |
Fragiadakis, M. | |
ISBN | 978-618-82844-8-7 |
Digital Object Identifier (DOI) | https://doi.org/10.7712/120119.7203.19035 |
Web address (URL) | https://doi.org/10.7712/120119.7203.19035 |
Copyright holder | © 2019 The authors |
Copyright information | All Rights Reserved. |
Page range | 4009-4023 |
https://repository.uel.ac.uk/item/86x3w
Download files
File
Al-Naimi and Abbas - COMPDYN_2019 Contribution.pdf | ||
License: All rights reserved | ||
File access level: Anyone |
371
total views470
total downloads5
views this month2
downloads this month