A Spiking Neural Network Model of the Medial Superior Olive using Spike Timing Dependent Plasticity for Sound Localisation

Article


Glackin, B., Wall, J., McGinnity, T.M., Maguire, L.P. and McDaid, L.J. 2010. A Spiking Neural Network Model of the Medial Superior Olive using Spike Timing Dependent Plasticity for Sound Localisation. Frontiers in Computational Neuroscience. 4 (18), pp. 1-16.
AuthorsGlackin, B., Wall, J., McGinnity, T.M., Maguire, L.P. and McDaid, L.J.
Abstract

Sound localization can be defined as the ability to identify the position of an input sound source and is considered a powerful aspect of mammalian perception. For low frequency sounds, i.e., in the range 270 Hz-1.5 KHz, the mammalian auditory pathway achieves this by extracting the Interaural Time Difference between sound signals being received by the left and right ear. This processing is performed in a region of the brain known as the Medial Superior Olive (MSO). This paper presents a Spiking Neural Network (SNN) based model of the MSO. The network model is trained using the Spike Timing Dependent Plasticity learning rule using experimentally observed Head Related Transfer Function data in an adult domestic cat. The results presented demonstrate how the proposed SNN model is able to perform sound localization with an accuracy of 91.82% when an error tolerance of +/-10 degrees is used. For angular resolutions down to 2.5 degrees , it will be demonstrated how software based simulations of the model incur significant computation times. The paper thus also addresses preliminary implementation on a Field Programmable Gate Array based hardware platform to accelerate system performance.

Keywordssound localisation; MSO; SNN; STDP
JournalFrontiers in Computational Neuroscience
Journal citation4 (18), pp. 1-16
Year2010
PublisherFrontiers
Publisher's version
License
CC BY-ND
Web address (URL)http://journal.frontiersin.org/article/10.3389/fncom.2010.00018/abstract
https://www.researchgate.net/publication/46037157_A_Spiking_Neural_Network_Model_of_the_Medial_Superior_Olive_Using_Spike_Timing_Dependent_Plasticity_for_Sound_Localization
Publication dates
Print03 Aug 2010
Publication process dates
Deposited21 Oct 2015
Copyright informationThis Document is Protected by copyright and was first published by Frontiers. All rights reserved. it is reproduced with permission.
Permalink -

https://repository.uel.ac.uk/item/861zq

  • 0
    total views
  • 0
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Related outputs

Towards a More Representative Definition of Cyber Security
Schatz, Daniel, Bashroush, R. and Wall, J. 2017. Towards a More Representative Definition of Cyber Security. Journal of Digital Forensics, Security and Law. 12 (2), pp. 53-74.
Recurrent lateral inhibitory spiking networks for speech enhancement
Wall, J., Glackin, Cornelius, Cannings, Nigel, Chollet, Gerard and Dugan, Nazim 2016. Recurrent lateral inhibitory spiking networks for speech enhancement. in: Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN) IEEE. pp. 1023-1028
Spiking neuron models of the medial and lateral superior olive for sound localisation
Wall, J., McDaid, L.J., Maguire, L.P. and McGinnity, T.M. 2008. Spiking neuron models of the medial and lateral superior olive for sound localisation. IEEE International Joint Conference on Neural Networks (IJCNN) (IEEE World Congress on Computational Intelligence). Hong Kong 01 - 08 Jun 2008 Hong Kong IEEE. pp. 2641-2647 doi:10.1109/IJCNN.2008.4634168
A comparison of sound localisation techniques using cross-correlation and spiking neural networks for mobile robotics
Wall, J., McGinnity, Thomas M. and Maguire, Liam P. 2011. A comparison of sound localisation techniques using cross-correlation and spiking neural networks for mobile robotics. Neural Networks (IJCNN), The 2011 International Joint Conference on. San Jose, CA 31 Jul - 05 Aug 2011 IEEE. pp. 1981-1987
Deep Laterally Recurrent Spiking Neural Networks for Speech Enhancement
Wall, J. 2016. Deep Laterally Recurrent Spiking Neural Networks for Speech Enhancement. UEL Computing & Engineering Showcase. London, UK 16 Jun 2016 UEL.
A spiking neural network implementation of sound localisation
Wall, J., McDaid, L.J., Maguire, L.P. and McGinnity, T.M. 2007. A spiking neural network implementation of sound localisation. IET Irish Signals and Systems. Derry, UK 13 - 14 Sep 2007 Derry, UK pp. 1-5
Using the interaural time difference and cross-correlation to localise short-term complex noises
Wall, J., McGinnity, Martin and Maguire, Liam 2011. Using the interaural time difference and cross-correlation to localise short-term complex noises. Artificial Intelligence and Cognitive Science (AICS). Derry, UK 31 Aug - 02 Sep 2011 University of Ulster, Intelligent Systems Research Centre.
A Framework for Realistic 3D Tele-Immersion
Fechteler, P., Hilsmann, A., Eisert, P., Broeck, S.V., Stevens, C., Wall, J., Sanna, M., Mauro, D.A., Kuijk, F., Mekuria, R., Cesar, P., Monaghan, D., O'Connor, N.E., Daras, P., Alexiadis, D. and Zahariadis, T. 2013. A Framework for Realistic 3D Tele-Immersion. 6th International Conference on Computer Vision / Computer Graphics Collaboration Techniques and Applications. Berlin, Germany 2013 New York, NY, USA ACM. pp. 1-8 doi:10.1145/2466715.2466718
Spiking Neural Network Connectivity and its Potential for Temporal Sensory Processing and Variable Binding
Wall, J. and Glackin, Cornelius 2013. Spiking Neural Network Connectivity and its Potential for Temporal Sensory Processing and Variable Binding. Frontiers Media SA.
Post-Cochlear Auditory Modelling for Sound Localisation using Bio-Inspired Techniques
Wall, J. 2010. Post-Cochlear Auditory Modelling for Sound Localisation using Bio-Inspired Techniques. PhD Thesis University of Ulster Faculty of Computing and Engineering
Fuzzy Ensembles for Embedding Adaptive Behaviours in Semi-Autonomous Avatars in 3D Virtual Worlds
Wall, J., Izquierdo, E. and Zhang, Q. 2013. Fuzzy Ensembles for Embedding Adaptive Behaviours in Semi-Autonomous Avatars in 3D Virtual Worlds. in: Proceedings 2013 18th International Conference on Digital Signal Processing (DSP) IEEE. pp. 1-6
Advancements and Challenges towards a Collaborative Framework for 3D Tele-Immersive Social Networking
Mauro, D.A., O'Connor, N.E., Monaghan, D., Gowing, M., Fechteler, P., Eisert, P., Wall, J., Izquierdo, E., Alexiadis, D.S., Daras, P., Mekuria, R. and Cesar, P. 2013. Advancements and Challenges towards a Collaborative Framework for 3D Tele-Immersive Social Networking. 4th IEEE International Workshop on Hot Topics in 3D (Hot3D). San Jose, CA, USA 15 Jul 2013 IEEE. pp. 1-2
A Framework for Human-like Behavior in an Immersive Virtual World
Kuijk, Fons, Van Broeck, Sigurd, Dareau, Claude, Ravenet, Brian, Ochs, Magalie, Apostolakis, Konstantinos, Daras, Petros, Monaghan, David, O'Connor, Noel E, Wall, J. and Izquierdo, Ebroul 2013. A Framework for Human-like Behavior in an Immersive Virtual World. in: Proceedings of 2013 18th International Conference on Digital Signal Processing (DSP) IEEE. pp. 1-7
REVERIE: Natural Human Interaction in Virtual Immersive Environments
Wall, J., Izquierdo, Ebroul, Argyriou, Lemonia, Monaghan, David S., O'Connor, Noel E., Poulakos, Steven, Smolic, Aljoscha and Mekuria, Rufael 2014. REVERIE: Natural Human Interaction in Virtual Immersive Environments. in: 2014 IEEE International Conference on Image Processing (ICIP) IEEE. pp. 2165-2167
A Methodological Approach to User Evaluation and Assessment of a Virtual Environment Hangout
Pasin, Marco, Frisiello, Antonella, Wall, J., Poulakos, Steven and Smolic, Aljoscha 2015. A Methodological Approach to User Evaluation and Assessment of a Virtual Environment Hangout. in: Sanna, Andrea, Lamberti, Fabrizio, Rokne, Jon and Gatteschi, Valentina (ed.) Proceedings of the 7th International Conference on Intelligent Technologies for Interactive Entertainment EAI. pp. 1-5
Playing immersive games on the REVERIE platform
Doumanis, Ioannis, Wall, J. and Monaghan, David S. 2015. Playing immersive games on the REVERIE platform. in: Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM) IEEE. pp. 1572-1577
Spiking neural network model of sound localisation using the interaural intensity difference
Wall, J., McDaid, Liam J., Maguire, Liam P. and McGinnity, Thomas M. 2012. Spiking neural network model of sound localisation using the interaural intensity difference. IEEE Transactions on Neural Networks. 23 (4), pp. 574-586.
Perception-based Modelling of System Behaviour
Wall, J. 2006. Perception-based Modelling of System Behaviour. Proc. of the IEEE Systems, Man and Cybernetics Society.
Spiking neural network connectivity and its potential for temporal sensory processing and variable binding
Wall, J. and Glackin, Cornelius 2013. Spiking neural network connectivity and its potential for temporal sensory processing and variable binding. Frontiers in Computational Neuroscience. 7 (182), pp. 1-2.