Annotator-dependent uncertainty-aware estimation of gait relative attributes

Article


Shehata, A., Makihara, Y., Muramatsu, D., Ahad, M. and Yasushi, Y. 2023. Annotator-dependent uncertainty-aware estimation of gait relative attributes. Pattern Recognition. 136 (Art. 109197). https://doi.org/10.1016/j.patcog.2022.109197
AuthorsShehata, A., Makihara, Y., Muramatsu, D., Ahad, M. and Yasushi, Y.
Abstract

In this paper, we describe an uncertainty-aware estimation framework for gait relative attributes. We specifically design a two-stream network model that takes a pair of gait videos as input. It then outputs a corresponding pair of Gaussian distributions of gait absolute attribute scores and annotator-dependent gait relative attribute label distributions. Moreover, we propose a differentiable annotator-independent uncertainty layer to estimate the gait relative attribute score distribution from the absolute distributions then map it to a relative attribute label distribution using the computation of cumulative distribution functions. Furthermore, we propose another annotator-dependent uncertainty layer to estimate the uncertainty on the gait relative attribute labels in terms of a set of trainable transition matrices. Finally, we design a joint loss function on the relative attribute label distribution to learn the model parameters. Experiments on two gait relative attribute datasets demonstrated the effectiveness of the proposed method against baselines in quantitative and qualitative evaluations.

JournalPattern Recognition
Journal citation136 (Art. 109197)
ISSN0031-3203
Year2023
PublisherElsevier
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1016/j.patcog.2022.109197
Publication dates
Online22 Nov 2022
PrintApr 2023
Publication process dates
Accepted20 Nov 2022
Deposited26 Jul 2023
FunderJapan Society for the Promotion of Science (JSPS)
Copyright holder© 2022, The Author(s)
Permalink -

https://repository.uel.ac.uk/item/8w4w1

Download files


Publisher's version
  • 9
    total views
  • 0
    total downloads
  • 4
    views this month
  • 0
    downloads this month

Export as

Related outputs

A Sleep Monitoring System Using Ultrasonic Sensors
Shammi, U. A. and Ahad, M. 2022. A Sleep Monitoring System Using Ultrasonic Sensors. International Journal of Biomedical Soft Computing and Human Sciences. 27 (1), pp. 13-20. https://doi.org/10.24466/ijbschs.27.1_13
Can Ensemble of Classifiers Provide Better Recognition Results in Packaging Activity?
Nazmus Sakib, A. H. M., Basak, P., Doha Uddin, S., Mustavi Tasin, S. and Ahad, M. 2022. Can Ensemble of Classifiers Provide Better Recognition Results in Packaging Activity? 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_10
Identification of Food Packaging Activity Using MoCap Sensor Data
Anwar, A., Islam Tapotee, M., Saha, P. and Ahad, M. 2022. Identification of Food Packaging Activity Using MoCap Sensor Data. 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_11
Lunch-Box Preparation Activity Understanding from Motion Capture Data Using Handcrafted Features
Pritom, Y. A., Rahman, M. S., Rahman, H. R., Kowshik, M. A. and Ahad, M. 2022. Lunch-Box Preparation Activity Understanding from Motion Capture Data Using Handcrafted Features. 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_12
Bento Packaging Activity Recognition Based on Statistical Features
Rakib Sayem, F., Sheikh, M. M. and Ahad, M. 2022. Bento Packaging Activity Recognition Based on Statistical Features. 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_13
Exploring Human Activities Using eSense Earable Device
Islam, M. S., Hossain, T., Ahad, M. and Inoue, S. 2021. Exploring Human Activities Using eSense Earable Device. in: Ahad, M., Inoue, S., Roggen, D. and Fujinami, K. (ed.) Activity and Behavior Computing Springer Singapore. pp. 169–185
Contactless Human Monitoring: Challenges and Future Direction
Mahbub, U., Rahman, T. and Ahad, M. 2021. Contactless Human Monitoring: Challenges and Future Direction. in: Ahad, M., Mahbub, U. and Ahad, M. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 335-364
Contactless Human Emotion Analysis Across Different Modalities
Nahid, N., Rahman, A. and Ahad, M. 2021. Contactless Human Emotion Analysis Across Different Modalities. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 237-269
Contactless Fall Detection for the Elderly
Nahian, M. J. A., Raju, M. H., Tasnim, Z., Mahmud, M., Ahad, M. and Kaiser, M. S. 2021. Contactless Fall Detection for the Elderly. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 203-235
Signal Processing for Contactless Monitoring
Billah, M. S., Ahad, M. and Mahbub, U. 2021. Signal Processing for Contactless Monitoring. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 113-144
Skeleton-Based Activity Recognition: Preprocessing and Approaches
Sarker, S., Rahman, S., Hossain, T., Faiza Ahmed, S., Jamal, L. and Ahad, M. 2021. Skeleton-Based Activity Recognition: Preprocessing and Approaches. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 48-81
IoT Sensor-Based Activity Recognition: Human Activity Recognition
Ahad, M., Antar, A. D. and Ahmed, M. 2021. IoT Sensor-Based Activity Recognition: Human Activity Recognition. Springer, Cham.