HID 2022: The 3rd International Competition on Human Identification at a Distance

Conference paper


Yu, S., Huang, Y., Wang, L., Makihara, Y., Wang, S., Ahad, M. and Nixon, M. 2022. HID 2022: The 3rd International Competition on Human Identification at a Distance. IJCB 2022: IEEE International Joint Conference on Biometrics. Abu Dhabi, UAE 10 - 13 Dec 2023 IEEE. https://doi.org/10.1109/IJCB54206.2022.10007993
AuthorsYu, S., Huang, Y., Wang, L., Makihara, Y., Wang, S., Ahad, M. and Nixon, M.
TypeConference paper
Abstract

The paper provides a summary of the Competition on Human Identification at a Distance 2022 (HID 2022), which is the third one in a series of competitions. HID 2022 is for promoting the research in human identification at a distance by providing a benchmark to evaluate different methods. The competition attracted 112 valid registered teams. 71 teams and 51 teams submitted their results in the first phase and the second phase, respectively. Very encouraging results have been achieved, and the accuracies of the top teams are much higher than those achieved in the previous two competitions. In this paper, we introduce the competition including the dataset, experimental settings, competition organization, results from the top teams and their analysis. The methods used by the top teams are also presented in the paper. The progress of this competition can give us an optimistic view on gait recognition.

KeywordsBiometrics; Security; AI; Gait; HID; Human Identification at a Distance
Year2022
ConferenceIJCB 2022: IEEE International Joint Conference on Biometrics
PublisherIEEE
Accepted author manuscript
License
File Access Level
Anyone
Publication dates
Online17 Jan 2023
Publication process dates
Deposited05 Dec 2023
Journal citationpp. 1-9
ISSN2474-9699
Book title2022 IEEE International Joint Conference on Biometrics (IJCB)
ISBN9781665463942
FunderWatrix Technology Limited Co. Ltd.
Digital Object Identifier (DOI)https://doi.org/10.1109/IJCB54206.2022.10007993
Web address (URL) of conference proceedingshttps://ieeexplore.ieee.org/xpl/conhome/10007927/proceeding
Copyright holder© 2023, IEEE
Copyright informationPersonal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
Permalink -

https://repository.uel.ac.uk/item/8wz34

Download files


Accepted author manuscript
2022_HID_Summary_Paper.pdf
License: All rights reserved
File access level: Anyone

  • 37
    total views
  • 23
    total downloads
  • 9
    views this month
  • 5
    downloads this month

Export as

Related outputs

Learn Programming with C: An Easy Step-by-Step Self-Practice Book for Learning C
Imran, S. M. S. and Ahad, M. A. R. 2024. Learn Programming with C: An Easy Step-by-Step Self-Practice Book for Learning C. CRC Press: Taylor & Francis Group.
Deep learning with image-based autism spectrum disorder analysis: A systematic review
Uddin, M. Z., Shahriar, M. A., Mahamood, M. N., Alnajjar, F., Pramanik, M. I. and Ahad, M. A. R. 2024. Deep learning with image-based autism spectrum disorder analysis: A systematic review. Engineering Applications of Artificial Intelligence. 127 (Art. 107185). https://doi.org/doi.org/10.1016/j.engappai.2023.107185
Annotator-dependent uncertainty-aware estimation of gait relative attributes
Shehata, A., Makihara, Y., Muramatsu, D., Ahad, M. and Yasushi, Y. 2023. Annotator-dependent uncertainty-aware estimation of gait relative attributes. Pattern Recognition. 136 (Art. 109197). https://doi.org/10.1016/j.patcog.2022.109197
Automated detection approaches to autism spectrum disorder based on human activity analysis: A review
Rahman, S., Ahmed, S. F., Shahid, O., Arrafi, M. A. and Ahad, M. A. R. 2022. Automated detection approaches to autism spectrum disorder based on human activity analysis: A review. Cognitive Computation. 14, pp. 1773-1800. https://doi.org/10.1007/s12559-021-09895-w
A Sleep Monitoring System Using Ultrasonic Sensors
Shammi, U. A. and Ahad, M. 2022. A Sleep Monitoring System Using Ultrasonic Sensors. International Journal of Biomedical Soft Computing and Human Sciences. 27 (1), pp. 13-20. https://doi.org/10.24466/ijbschs.27.1_13
Can Ensemble of Classifiers Provide Better Recognition Results in Packaging Activity?
Nazmus Sakib, A. H. M., Basak, P., Doha Uddin, S., Mustavi Tasin, S. and Ahad, M. 2022. Can Ensemble of Classifiers Provide Better Recognition Results in Packaging Activity? 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_10
Identification of Food Packaging Activity Using MoCap Sensor Data
Anwar, A., Islam Tapotee, M., Saha, P. and Ahad, M. 2022. Identification of Food Packaging Activity Using MoCap Sensor Data. 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_11
Lunch-Box Preparation Activity Understanding from Motion Capture Data Using Handcrafted Features
Pritom, Y. A., Rahman, M. S., Rahman, H. R., Kowshik, M. A. and Ahad, M. 2022. Lunch-Box Preparation Activity Understanding from Motion Capture Data Using Handcrafted Features. 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_12
Bento Packaging Activity Recognition Based on Statistical Features
Rakib Sayem, F., Sheikh, M. M. and Ahad, M. 2022. Bento Packaging Activity Recognition Based on Statistical Features. 3rd International Conference on Activity and Behavior Computing (ABC 2021). Online 22 - 23 Oct 2021 Springer Singapore. https://doi.org/10.1007/978-981-19-0361-8_13
MUMAP: Modified Ultralightweight Mutual Authentication protocol for RFID enabled IoT networks
Raju, M. H., Ahmed, M. U. and Ahad, M. A. R. 2021. MUMAP: Modified Ultralightweight Mutual Authentication protocol for RFID enabled IoT networks. Journal of the Institute of Industrial Applications Engineers. 9 (2), pp. 33-39. https://doi.org/10.12792/JIIAE.9.33
Emotion Recognition from EEG Signal Focusing on Deep Learning and Shallow Learning Techniques
Islam, M. R., Moni, M. A., Islam, M. M., Rashed-Al-Mahfuz, M., Islam, M. S., Hasan, M. K., Hossain, M. S., Ahmad, M., Uddin, S., Azad, A., Alyami, S. A., Ahad, M. A. R. and Lió, P. 2021. Emotion Recognition from EEG Signal Focusing on Deep Learning and Shallow Learning Techniques. IEEE Access. 9, pp. 94601-94624. https://doi.org/10.1109/ACCESS.2021.3091487
Static Postural Transition-based Technique and Efficient Feature Extraction for Sensor-based Activity Recognition
Ahmed, M., Das Antar, A. and Ahad, M. 2021. Static Postural Transition-based Technique and Efficient Feature Extraction for Sensor-based Activity Recognition. Pattern Recognition Letters. 147, pp. 25-33. https://doi.org/10.1016/j.patrec.2021.04.001
Activity Recognition from Accelerometer Data Based on Supervised Learning for Wireless Sensor Network
Israt, F. A., Hossain, T., Inoue, S. and Ahad, M. A. R. 2021. Activity Recognition from Accelerometer Data Based on Supervised Learning for Wireless Sensor Network. International Journal of Biomedical Soft Computing and Human Sciences. 26 (2), pp. 73-86. https://doi.org/10.24466/ijbschs.26.2_73
Action recognition using Kinematics Posture Feature on 3D skeleton joint locations
Ahad, M. A. R., Ahmed, M., Antar, A. D., Makihara, Y. and Yagi. Y. 2021. Action recognition using Kinematics Posture Feature on 3D skeleton joint locations. Pattern Recognition Letters. 145, pp. 216-224. https://doi.org/10.1016/j.patrec.2021.02.013
Exploring Human Activities Using eSense Earable Device
Islam, M. S., Hossain, T., Ahad, M. and Inoue, S. 2021. Exploring Human Activities Using eSense Earable Device. in: Ahad, M., Inoue, S., Roggen, D. and Fujinami, K. (ed.) Activity and Behavior Computing Springer Singapore. pp. 169–185
Contactless Human Monitoring: Challenges and Future Direction
Mahbub, U., Rahman, T. and Ahad, M. 2021. Contactless Human Monitoring: Challenges and Future Direction. in: Ahad, M., Mahbub, U. and Ahad, M. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 335-364
Contactless Human Emotion Analysis Across Different Modalities
Nahid, N., Rahman, A. and Ahad, M. 2021. Contactless Human Emotion Analysis Across Different Modalities. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 237-269
Contactless Fall Detection for the Elderly
Nahian, M. J. A., Raju, M. H., Tasnim, Z., Mahmud, M., Ahad, M. and Kaiser, M. S. 2021. Contactless Fall Detection for the Elderly. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 203-235
Signal Processing for Contactless Monitoring
Billah, M. S., Ahad, M. and Mahbub, U. 2021. Signal Processing for Contactless Monitoring. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 113-144
Skeleton-Based Activity Recognition: Preprocessing and Approaches
Sarker, S., Rahman, S., Hossain, T., Faiza Ahmed, S., Jamal, L. and Ahad, M. 2021. Skeleton-Based Activity Recognition: Preprocessing and Approaches. in: Ahad, M., Mahbub, U. and Rahman, T. (ed.) Contactless Human Activity Analysis Springer, Cham. pp. 48-81
IoT Sensor-Based Activity Recognition: Human Activity Recognition
Ahad, M., Antar, A. D. and Ahmed, M. 2021. IoT Sensor-Based Activity Recognition: Human Activity Recognition. Springer, Cham.
A Method for Sensor-Based Activity Recognition in Missing Data Scenario
Hossain, T., Ahad, M. A. R. and Inoue, S. 2020. A Method for Sensor-Based Activity Recognition in Missing Data Scenario. Sensors. 20 (14), pp. 1-23. https://doi.org/10.3390/s20143811
An AI-based Visual Aid with Integrated Reading Assistant for the Completely Blind
Khan, M. A., Paul, P., Rashid, M., Hossain, M. and Ahad, M. 2020. An AI-based Visual Aid with Integrated Reading Assistant for the Completely Blind. IEEE Transactions on Human-Machine Systems. 50 (6), pp. 507-517. https://doi.org/10.1109/THMS.2020.3027534