Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats

Article


Mesnage, R., Teixeira, M., Mandrioli, D., Falcioni, L., Zwittink, D., Mazzacuva, F., Caldwell, A., Halket, J., Amiel, C., Panoff, J-M., Belpoggi, F. and Antoniou, M. N. 2021. Use of Shotgun Metagenomics and Metabolomics to Evaluate the Impact of Glyphosate or Roundup MON 52276 on the Gut Microbiota and Serum Metabolome of Sprague-Dawley Rats. Environmental Health Perspectives. 129 (1). https://doi.org/10.1289/EHP6990
AuthorsMesnage, R., Teixeira, M., Mandrioli, D., Falcioni, L., Zwittink, D., Mazzacuva, F., Caldwell, A., Halket, J., Amiel, C., Panoff, J-M., Belpoggi, F. and Antoniou, M. N.
Abstract

Background:
There is intense debate on whether glyphosate can inhibit the shikimate pathway of gastrointestinal microorganisms, with potential health implications.

Objectives:
We tested whether glyphosate or its representative EU herbicide formulation Roundup MON 52276 affects the rat gut microbiome.

Methods:
We combined cecal microbiome shotgun metagenomics with serum and cecum metabolomics to assess the effects of glyphosate [0.5, 50, 175 mg/kg body weight (BW) per day] or MON 52276 at the same glyphosate-equivalent doses, in a 90-d toxicity test in rats.

Results:
Glyphosate and MON 52276 treatment resulted in ceca accumulation of shikimic acid and 3-dehydroshikimic acid, suggesting inhibition of 5-enolpyruvylshikimate-3-phosphate synthase of the shikimate pathway in the gut microbiome. Cysteinylglycine, γ-glutamylglutamine, and valylglycine levels were elevated in the cecal microbiome following glyphosate and MON 52276 treatments. Altered cecum metabolites were not differentially expressed in serum, suggesting that the glyphosate and MON 52276 impact on gut microbial metabolism had limited consequences on physiological biochemistry. Serum metabolites differentially expressed with glyphosate treatment were associated with nicotinamide, branched-chain amino acid, methionine, cysteine, and taurine metabolism, indicative of a response to oxidative stress. MON 52276 had similar, but more pronounced, effects than glyphosate on the serum metabolome. Shotgun metagenomics of the cecum showed that treatment with glyphosate and MON 52276 resulted in higher levels of Eggerthella spp., Shinella zoogleoides, Acinetobacter johnsonii, and Akkermansia muciniphila. Shinella zoogleoides was higher only with MON 52276 exposure. In vitro culture assays with Lacticaseibacillus rhamnosus strains showed that Roundup GT plus inhibited growth at concentrations at which MON 52276 and glyphosate had no effect.

Discussion:
Our study highlights the power of multi-omics approaches to investigate the toxic effects of pesticides. Multi-omics revealed that glyphosate and MON 52276 inhibited the shikimate pathway in the rat gut microbiome. Our findings could be used to develop biomarkers for epidemiological studies aimed at evaluating the effects of glyphosate herbicides on humans.

JournalEnvironmental Health Perspectives
Journal citation129 (1)
ISSN0091-6765
Year2021
Publisher National Institute of Environmental Health Sciences (NIEHS)
Supplemental file
File Access Level
Anyone
Supplemental file
File Access Level
Anyone
Supplemental file
File Access Level
Anyone
Supplemental file
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1289/EHP6990
Publication dates
Online21 Jan 2021
Publication process dates
Deposited22 Feb 2024
FunderSustainable Food Alliance (USA)
Sheepdrove Trust (UK)
Copyright holder© 2021, The Authors
Permalink -

https://repository.uel.ac.uk/item/8x564

Download files


Supplemental file
ehp6990.smcontents.508.pdf
File access level: Anyone

ehp6990.s001.acco.pdf
File access level: Anyone

Contaminant Screening.pdf
File access level: Anyone

Supplemental Excel File.xls
File access level: Anyone

  • 22
    total views
  • 14
    total downloads
  • 13
    views this month
  • 3
    downloads this month

Export as

Related outputs

PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes
Jian, J., Mazzacuva, F., Crocetti, L., Giovannoni, M. P. and Cilibrizzi, A. 2023. PDE4 Inhibitors: Profiling Hits through the Multitude of Structural Classes. International Journal of Molecular Sciences. 24 (14), p. 11518. https://doi.org/10.3390/ijms241411518
Optimization of 4-amino-pyridazin-3(2H)-one as a valid core scaffold for FABP4 inhibitors
Floresta, G., Crocetti, L., Rodrigues de Oliveria Silva, R., Patamia, V., Mazzacuva, F., Chen, Y. C. S., Vergelli, C. and Cilibrizzi, A. 2023. Optimization of 4-amino-pyridazin-3(2H)-one as a valid core scaffold for FABP4 inhibitors. Archiv der Pharmazie. 356 (10), p. 2300314. https://doi.org/10.1002/ardp.202300314
Evaluating thermogravimetric analysis for the measurement of drug loading in mesoporous silica nanoparticles (MSNs)
Almaghrabi, M., Alqurshi, A., Jadhav, S. A., Mazzacuva, F., Cilibrizzi, A., Raimi-Abraham, B. and Royall, P. G. 2023. Evaluating thermogravimetric analysis for the measurement of drug loading in mesoporous silica nanoparticles (MSNs). Thermochimica Acta. 730 (Art. 179616). https://doi.org/10.1016/j.tca.2023.179616
OCT2013, an ischaemia-activated antiarrhythmic prodrug, devoid of the systemic side effects of lidocaine
Hesketh, L. M., Sikkel, M. B., Mahoney-Sanchez, L., Mazzacuva, F., Chowdury, R. A., Tzortzis, K. N., Firth, J., MacLeod, K. T., Ogrodzinski, S., Wilder, C. D. E., Pattersone, L. H., Peters, N. S. and Curtis, M. J. 2022. OCT2013, an ischaemia-activated antiarrhythmic prodrug, devoid of the systemic side effects of lidocaine. British Journal of Pharmacology. 179 (9), pp. 2037-2053. https://doi.org/10.1111/bph.15764
The surfactant co-formulant POEA in the glyphosate-based herbicide RangerPro but not glyphosate alone causes necrosis in Caco-2 and HepG2 human cell lines and ER stress in the ToxTracker assay
Mesnage, R., Gerguson, S., Brandsma, I., Moelijker, N., Zhang, G., Mazzacuva, F., Caldwell, A., Halket, J. and Antoniou, M. N. 2022. The surfactant co-formulant POEA in the glyphosate-based herbicide RangerPro but not glyphosate alone causes necrosis in Caco-2 and HepG2 human cell lines and ER stress in the ToxTracker assay. Food and Chemical Toxicology. 168 (Art. 113380). https://doi.org/10.1016/j.fct.2022.113380
Ligand Growing Experiments Suggested 4-amino and 4-ureido pyridazin-3(2H)-one as Novel Scaffold for FABP4 Inhibition
Crocetti, L., Floresta, G., Zagni, C., Merugu, D., Mazzacuva, F., Rodrigues de Oliveira Silva, R., Vergelli, C., Giovannoni, M. P. and Cilibrizzi, A. 2022. Ligand Growing Experiments Suggested 4-amino and 4-ureido pyridazin-3(2H)-one as Novel Scaffold for FABP4 Inhibition. Pharmaceuticals. 15 (11), p. 1335. https://doi.org/10.3390/ph15111335
Tissue Proteome of 2-Hydroxyacyl-CoA Lyase Deficient Mice Reveals Peroxisome Proliferation and Activation of ω-Oxidation
Khalil, Y., Carrino, S., Lin, F., Ferlin, A., Lad, H. V., Mazzacuva, F., Falcone, S., Rivers, N., Banks, G., Concas, D., Aguilar, C., Haynes, A. R., Blease, A., Nicol, T., Al-Shawi, R., Heywood, W., Potter, P., Mills, K., Gale, D. P. and Clayton, P. T. 2022. Tissue Proteome of 2-Hydroxyacyl-CoA Lyase Deficient Mice Reveals Peroxisome Proliferation and Activation of ω-Oxidation. International Journal of Molecular Sciences. 23 (Art. 987). https://doi.org/10.3390/ijms23020987
Urinary excretion of herbicide co-formulants after oral exposure to roundup MON 52276 in rats
Mesnage, R., Mazzacuva, F., Caldwell, A., Halket, J. and Antoniou, M. N. 2021. Urinary excretion of herbicide co-formulants after oral exposure to roundup MON 52276 in rats. International Journal of Environmental Research and Public Health. 197 (Art. 111103). https://doi.org/10.1016/j.envres.2021.111103