Sediment Resuspension Due to Near-Bed Turbulent Effects: A Deep Sea Case Study on the Northwest Continental Slope of Western Australia

Article


Salim, Sarik, Pattiaratchi, Charitha, Tinoco, Rafael O. and Jayaratne, R. 2018. Sediment Resuspension Due to Near-Bed Turbulent Effects: A Deep Sea Case Study on the Northwest Continental Slope of Western Australia. Journal of Geophysical Research: Oceans. 123 (10), pp. 7102-7119.
AuthorsSalim, Sarik, Pattiaratchi, Charitha, Tinoco, Rafael O. and Jayaratne, R.
Abstract

Sediment transport equations often consider a mean velocity threshold for the initiation of sediment motion and resuspension, ignoring event‐based turbulent bursting processes. However, laboratory experiments have suggested that near‐bed sediment resuspension is influenced by intermittent turbulent coherent structures. In the field, accessibility constraints for deployment of easily operated equipment has largely prevented further identification and understanding of such processes, which may contribute to resuspension in the marine environment. Field experiments were conducted on the Northwest Slope, Australia, under conditions where the mean current velocities were below the estimated and measured time‐averaged critical velocity to investigate the relationship between near‐bed turbulent coherent structures and sediment resuspension. Results indicate that sediment resuspension occur even when velocities are below the estimated and measured mean critical values. The majority of turbulent sediment flux is due to ejection and sweep events, with lesser contributions from up‐acceleration and down‐deceleration (vertical flow) events. Spectral and quadrant analysis indicated the anisotropic and intermittent nature of Reynolds stresses, and wavelet transform revealed a group of turbulent bursting sequences associated with sediment resuspension. These observations, in flow conditions where resuspension was not expected to occur based on mean threshold concepts, reveal that intermittent turbulent events control sediment resuspension rather a single time‐averaged critical velocity. This highlights the need of considering turbulence as a significant factor in sediment resuspension and should be further investigated for inclusion into future sediment transport modeling.

JournalJournal of Geophysical Research: Oceans
Journal citation123 (10), pp. 7102-7119
ISSN2169-9275
Year2018
PublisherAmerican Geophysical Union
Publisher's version
Digital Object Identifier (DOI)doi:10.1029/2018JC013819
Web address (URL)https://doi.org/10.1029/2018JC013819
Publication dates
Online17 Sep 2018
Publication process dates
Deposited10 Oct 2018
Accepted09 Sep 2018
Accepted09 Sep 2018
FunderAustralian Research Council
Australian Research Council
External resourceData.mat
Copyright information© 2018 American Geophysical Union. All Rights Reserved.
LicenseAll rights reserved (under embargo)
Permalink -

https://repository.uel.ac.uk/item/846q3

  • 16
    total views
  • 56
    total downloads
  • 4
    views this month
  • 8
    downloads this month

Related outputs

Individual violent wave-overtopping events: behaviour and estimation
Raby, Alison, Jayaratne, R., Bredmose, Henrik and Bullock, Geoff 2019. Individual violent wave-overtopping events: behaviour and estimation. Journal of Hydraulic Research.
Historical changes in the shoreline and management of Marawila Beach, Sri Lanka, from 1980 to 2017
Samarasekara, Ratnayakage Sameera Maduranga, Sasaki, Jun, Jayaratne, R., Suzuki, Takayuki, Ranawaka, R.A.S. and Pathmasiri, Sakuntha D. 2018. Historical changes in the shoreline and management of Marawila Beach, Sri Lanka, from 1980 to 2017. Ocean & Coastal Management. 165, pp. 370-384.
The influence of turbulent bursting on sediment resuspension under fluvial unidirectional currents
Salim, Sarik, Pattiaratchi, Charitha, Tinoco, Rafael, Coco, Giovanni, Hetzel, Yasha, Wijeratne, Sarath and Jayaratne, R. 2016. The influence of turbulent bursting on sediment resuspension under fluvial unidirectional currents. Earth Surface Dynamics. 5 (3), pp. 399-415.
Failure Mechanisms and Local Scour at Coastal Structures induced by Tsunamis
Jayaratne, R., Premaratne, Buddhika, Adewale, Abimbola, Mikami, Takahito, Matsuba, Shunya, Shibayama, Tomoya, Esteban, Miguel and Nistor, Ioan 2016. Failure Mechanisms and Local Scour at Coastal Structures induced by Tsunamis. Coastal Engineering Journal. 58 (4), p. 1640017.
A Cross-Shore Beach Profile Evolution Model
Jayaratne, R., Rahman, MD Rezaur and Shibayama, Tomoya 2015. A Cross-Shore Beach Profile Evolution Model. Coastal Engineering Journal. 56 (04), p. 1450020.
Hydrodynamic investigation of fluvial sediment transport with Soil Protrusion Apparatus (SPA)
Jayaratne, R. and Salim, Sarik 2014. Hydrodynamic investigation of fluvial sediment transport with Soil Protrusion Apparatus (SPA). Open Engineering. 5 (1), pp. 48-58.
Stability of Breakwater Armor Units against Tsunami Attacks
Esteban, Miguel, Jayaratne, R., Mikami, Takahito, Morikubo, Izumi, Shibayama, Tomoya, Thao, Nguyen Danh, Ohira, Koichiro, Ohtani, Akira, Mizuno, Yusuke, Kinoshita, Mizuho and Matsuba, Shunya 2014. Stability of Breakwater Armor Units against Tsunami Attacks. Journal of Waterway, Port, Coastal, and Ocean Engineering. 140 (2), pp. 188-198.
Applicability of suspended sediment concentration formulae to large-scale beach morphological changes
Jayaratne, R., Takayama, Yasufumi and Shibayama, Tomoya 2012. Applicability of suspended sediment concentration formulae to large-scale beach morphological changes. in: Lynett, Patrick and McKee Smith, Jane (ed.) Proceedings of 33rd Conference on Coastal Engineering, Santander, Spain, 2012 Reston, VA Coastal Engineering Research Council.
Field Survey of Coastal Dyke Failure due to 2011 Great Eastern Japan Earthquake Tsunami
Jayaratne, R. 2013. Field Survey of Coastal Dyke Failure due to 2011 Great Eastern Japan Earthquake Tsunami. UEL Research and Knowledge Exchange Conference 2013. University of East London, London 26 Jun 2013 London University of East London.
A Practical Computer Simulation Model for Two-Dimensional Beach Deformation (XBEACH Model)
Jayaratne, R. 2012. A Practical Computer Simulation Model for Two-Dimensional Beach Deformation (XBEACH Model). UEL Research and Knowledge Exchange Conference 2012. University of East London, London 03 May 2012 London University of East London.
Shallow Water Hydrodynamic Investigation Of Local Scour Over Smooth And Rough Sediment Beds
Salim, Mohammad S. and Jayaratne, R. 2012. Shallow Water Hydrodynamic Investigation Of Local Scour Over Smooth And Rough Sediment Beds. The International Journal of Ocean and Climate Systems. 3 (4), pp. 229-240.
Soil protrusion apparatus for erosion rate prediction with smooth and rough sediment beds
Salim, Sarik, Jayaratne, R. and Wijeyesekera, D.Chitral 2011. Soil protrusion apparatus for erosion rate prediction with smooth and rough sediment beds. Advances in Computing and Technology. University of East London, London Jan 2011 London University of East London, School of Architecture Computing and Engineering.
Experimental investigation of hydrodynamic erosion of soils
Jayaratne, R. and Wijeyesekera, D.Chitral 2010. Experimental investigation of hydrodynamic erosion of soils. Proceedings of Advances in Computing and Technology, (AC&T) The School of Computing and Technology 5th Annual Conference, University of East London, pp. 79-85
Fabric of peat soils using image analysis
Zainorabidin, Adnan, Wijeyesekera, D.Chitral and Jayaratne, R. 2010. Fabric of peat soils using image analysis.
Hydraulic roughness – links between Manning’s coefficient, Nikuradse’s equivalent sand roughness and bed grain size
Marriott, M. and Jayaratne, R. 2010. Hydraulic roughness – links between Manning’s coefficient, Nikuradse’s equivalent sand roughness and bed grain size. Advances in Computing and Technology 2010. University of East London, London London University of East London, School of Architecture Computing and Engineering. pp. 27-32