Post-Cochlear Auditory Modelling for Sound Localisation using Bio-Inspired Techniques

PhD Thesis


Wall, J. 2010. Post-Cochlear Auditory Modelling for Sound Localisation using Bio-Inspired Techniques. PhD Thesis University of Ulster Faculty of Computing and Engineering
AuthorsWall, J.
TypePhD Thesis
Abstract

This thesis presents spiking neural architectures which simulate the sound localisation capability of the mammalian auditory pathways. This localisation ability is achieved by exploiting important differences in the sound stimulus received by each ear, known as binaural cues. Interaural time difference and interaural intensity difference are the two binaural cues which play the most significant role in mammalian sound localisation. These cues are processed by different regions within the auditory pathways and enable the localisation of sounds at different frequency ranges; interaural time difference is used to localise low frequency sounds whereas interaural intensity difference localises high frequency sounds. Interaural time difference refers to the different points in time at which a sound from a single location arrives at each ear and interaural intensity difference refers to the difference in sound pressure levels of the sound at each ear, measured in decibels. Taking inspiration from the mammalian brain, two spiking neural network topologies were designed to extract each of these cues. The architecture of the spiking neural network designed to process the interaural time difference cue was inspired by the medial superior olive. The lateral superior olive was the inspiration for the architecture designed to process the interaural intensity difference cue. The development of these spiking neural network architectures required the integration of other biological models, such as an auditory periphery (cochlea) model, models of bushy cells and the medial nucleus of the trapezoid body, leaky integrate and fire spiking neurons, facilitating synapses, receptive fields and the appropriate use of excitatory and inhibitory neurons. Two biologically inspired learning algorithms were used to train the architectures to perform sound localisation. Experimentally derived HRTF acoustical data from adult domestic cats was employed to validate the localisation ability of the two architectures. The localisation abilities of the two models are comparable to other computational techniques employed in the literature. The experimental results demonstrate that the two SNN models behave in a similar way to the mammalian auditory system, i.e. the spiking neural network for interaural time difference extraction performs best when it is localising low frequency data, and the interaural intensity difference spiking neuron model performs best when it is localising high frequency data. Thus, the combined models form a duplex system of sound localisation. Additionally, both spiking neural network architectures show a high degree of robustness when the HRTF acoustical data is corrupted by noise.

Year2010
Web address (URL)https://www.researchgate.net/publication/235958562_Post-Cochlear_Auditory_Modelling_for_Sound_Localisation_using_Bio-Inspired_Techniques
Publication dates
PrintApr 2010
Publication process dates
Deposited03 Dec 2015
Publisher's version
License
CC BY-NC-ND
File Access Level
Registered users only
Permalink -

https://repository.uel.ac.uk/item/86267

  • 5
    total views
  • 0
    total downloads
  • 1
    views this month
  • 0
    downloads this month

Related outputs

Towards a More Representative Definition of Cyber Security
Schatz, Daniel, Bashroush, R. and Wall, J. 2017. Towards a More Representative Definition of Cyber Security. Journal of Digital Forensics, Security and Law. 12 (2), pp. 53-74.
Recurrent lateral inhibitory spiking networks for speech enhancement
Wall, J., Glackin, Cornelius, Cannings, Nigel, Chollet, Gerard and Dugan, Nazim 2016. Recurrent lateral inhibitory spiking networks for speech enhancement. in: Proceedings of 2016 International Joint Conference on Neural Networks (IJCNN) IEEE. pp. 1023-1028
Spiking neuron models of the medial and lateral superior olive for sound localisation
Wall, J., McDaid, L.J., Maguire, L.P. and McGinnity, T.M. 2008. Spiking neuron models of the medial and lateral superior olive for sound localisation. IEEE International Joint Conference on Neural Networks (IJCNN) (IEEE World Congress on Computational Intelligence). Hong Kong 01 - 08 Jun 2008 Hong Kong IEEE. pp. 2641-2647 doi:10.1109/IJCNN.2008.4634168
A comparison of sound localisation techniques using cross-correlation and spiking neural networks for mobile robotics
Wall, J., McGinnity, Thomas M. and Maguire, Liam P. 2011. A comparison of sound localisation techniques using cross-correlation and spiking neural networks for mobile robotics. Neural Networks (IJCNN), The 2011 International Joint Conference on. San Jose, CA 31 Jul - 05 Aug 2011 IEEE. pp. 1981-1987
Deep Laterally Recurrent Spiking Neural Networks for Speech Enhancement
Wall, J. 2016. Deep Laterally Recurrent Spiking Neural Networks for Speech Enhancement. UEL Computing & Engineering Showcase. London, UK 16 Jun 2016 UEL.
A spiking neural network implementation of sound localisation
Wall, J., McDaid, L.J., Maguire, L.P. and McGinnity, T.M. 2007. A spiking neural network implementation of sound localisation. IET Irish Signals and Systems. Derry, UK 13 - 14 Sep 2007 Derry, UK pp. 1-5
Using the interaural time difference and cross-correlation to localise short-term complex noises
Wall, J., McGinnity, Martin and Maguire, Liam 2011. Using the interaural time difference and cross-correlation to localise short-term complex noises. Artificial Intelligence and Cognitive Science (AICS). Derry, UK 31 Aug - 02 Sep 2011 University of Ulster, Intelligent Systems Research Centre.
A Framework for Realistic 3D Tele-Immersion
Fechteler, P., Hilsmann, A., Eisert, P., Broeck, S.V., Stevens, C., Wall, J., Sanna, M., Mauro, D.A., Kuijk, F., Mekuria, R., Cesar, P., Monaghan, D., O'Connor, N.E., Daras, P., Alexiadis, D. and Zahariadis, T. 2013. A Framework for Realistic 3D Tele-Immersion. 6th International Conference on Computer Vision / Computer Graphics Collaboration Techniques and Applications. Berlin, Germany 2013 New York, NY, USA ACM. pp. 1-8 doi:10.1145/2466715.2466718
Spiking Neural Network Connectivity and its Potential for Temporal Sensory Processing and Variable Binding
Wall, J. and Glackin, Cornelius 2013. Spiking Neural Network Connectivity and its Potential for Temporal Sensory Processing and Variable Binding. Frontiers Media SA.
Fuzzy Ensembles for Embedding Adaptive Behaviours in Semi-Autonomous Avatars in 3D Virtual Worlds
Wall, J., Izquierdo, E. and Zhang, Q. 2013. Fuzzy Ensembles for Embedding Adaptive Behaviours in Semi-Autonomous Avatars in 3D Virtual Worlds. in: Proceedings 2013 18th International Conference on Digital Signal Processing (DSP) IEEE. pp. 1-6
Advancements and Challenges towards a Collaborative Framework for 3D Tele-Immersive Social Networking
Mauro, D.A., O'Connor, N.E., Monaghan, D., Gowing, M., Fechteler, P., Eisert, P., Wall, J., Izquierdo, E., Alexiadis, D.S., Daras, P., Mekuria, R. and Cesar, P. 2013. Advancements and Challenges towards a Collaborative Framework for 3D Tele-Immersive Social Networking. 4th IEEE International Workshop on Hot Topics in 3D (Hot3D). San Jose, CA, USA 15 Jul 2013 IEEE. pp. 1-2
A Framework for Human-like Behavior in an Immersive Virtual World
Kuijk, Fons, Van Broeck, Sigurd, Dareau, Claude, Ravenet, Brian, Ochs, Magalie, Apostolakis, Konstantinos, Daras, Petros, Monaghan, David, O'Connor, Noel E, Wall, J. and Izquierdo, Ebroul 2013. A Framework for Human-like Behavior in an Immersive Virtual World. in: Proceedings of 2013 18th International Conference on Digital Signal Processing (DSP) IEEE. pp. 1-7
REVERIE: Natural Human Interaction in Virtual Immersive Environments
Wall, J., Izquierdo, Ebroul, Argyriou, Lemonia, Monaghan, David S., O'Connor, Noel E., Poulakos, Steven, Smolic, Aljoscha and Mekuria, Rufael 2014. REVERIE: Natural Human Interaction in Virtual Immersive Environments. in: 2014 IEEE International Conference on Image Processing (ICIP) IEEE. pp. 2165-2167
A Methodological Approach to User Evaluation and Assessment of a Virtual Environment Hangout
Pasin, Marco, Frisiello, Antonella, Wall, J., Poulakos, Steven and Smolic, Aljoscha 2015. A Methodological Approach to User Evaluation and Assessment of a Virtual Environment Hangout. in: Sanna, Andrea, Lamberti, Fabrizio, Rokne, Jon and Gatteschi, Valentina (ed.) Proceedings of the 7th International Conference on Intelligent Technologies for Interactive Entertainment EAI. pp. 1-5
Playing immersive games on the REVERIE platform
Doumanis, Ioannis, Wall, J. and Monaghan, David S. 2015. Playing immersive games on the REVERIE platform. in: Computer and Information Technology; Ubiquitous Computing and Communications; Dependable, Autonomic and Secure Computing; Pervasive Intelligence and Computing (CIT/IUCC/DASC/PICOM) IEEE. pp. 1572-1577
Spiking neural network model of sound localisation using the interaural intensity difference
Wall, J., McDaid, Liam J., Maguire, Liam P. and McGinnity, Thomas M. 2012. Spiking neural network model of sound localisation using the interaural intensity difference. IEEE Transactions on Neural Networks. 23 (4), pp. 574-586.
Perception-based Modelling of System Behaviour
Wall, J. 2006. Perception-based Modelling of System Behaviour. Proc. of the IEEE Systems, Man and Cybernetics Society.
A Spiking Neural Network Model of the Medial Superior Olive using Spike Timing Dependent Plasticity for Sound Localisation
Glackin, B., Wall, J., McGinnity, T.M., Maguire, L.P. and McDaid, L.J. 2010. A Spiking Neural Network Model of the Medial Superior Olive using Spike Timing Dependent Plasticity for Sound Localisation. Frontiers in Computational Neuroscience. 4 (18), pp. 1-16.
Spiking neural network connectivity and its potential for temporal sensory processing and variable binding
Wall, J. and Glackin, Cornelius 2013. Spiking neural network connectivity and its potential for temporal sensory processing and variable binding. Frontiers in Computational Neuroscience. 7 (182), pp. 1-2.