Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity

Article


Xia, Hongrui, Sun, Longru, Lou, Hongxiang and Rahman, M. 2014. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity. Phytomedicine.
AuthorsXia, Hongrui, Sun, Longru, Lou, Hongxiang and Rahman, M.
Abstract

Salvianolic acid A (Sal A), an important constituent of Radix Salviae Miltiorrhizae (RSM), is effective for the treatment of myocardial infarction (MI) and coronary heart disease due to its potential in the improvement of acute myocardial ischemia. However, its content is very low in RSM. So it is obvious to find a rich source of Sal A or to improve its content by conversion of other related components into Sal A modifying reaction conditions. In this research we focused on the conversion of Sal B into Sal A in aqueous solutions of RSM by using different reaction conditions including pH, temperature, pressure and humidity. During the reactions, the contents of Sal A, Sal B and danshensu in the RSM were analyzed by high-performance liquid chromatography (HPLC) and liquid chromatography–mass spectrometry (LCMS). The results indicated that the conversion of Sal B into Sal A in RSM tissues under the conditions of a high temperature, high pressure and high humidity was efficient and thereby, was readily utilized to prepare rich Sal A materials in practice.

JournalPhytomedicine
ISSN0944-7113
Year2014
PublisherElsevier
Accepted author manuscript
License
CC BY-ND
Web address (URL)http://dx.doi.org/10.1016/j.phymed.2014.01.005
Publication dates
Print16 Feb 2014
Publication process dates
Deposited10 Mar 2014
FunderNational Natural Science Foundation of China
Natural Science Foundation of Shandong Province
Copyright information“NOTICE: this is the author’s version of a work that was accepted for publication in Phytomedicine. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. "
Permalink -

https://repository.uel.ac.uk/item/85qq6

  • 5
    total views
  • 32
    total downloads
  • 1
    views this month
  • 6
    downloads this month

Related outputs

Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus
Siddique, H., Pendry, B. and Rahman, M. 2019. Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus. Molecules. 24 (3), p. Art. 385.
Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus
Rahman, M., Shiu, Winnie K.P., Gibbons, Simon and Malkinson, John P. 2018. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. European Journal of Medicinal Chemistry. 155, pp. 255-262.
Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and Bioassay
Rahman, M. 2015. Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and Bioassay. in: Evidence-Based Validation of Herbal Medicine Elsevier. pp. 495-513
Anti-Staphylococcal Calopins from Fruiting Bodies of Caloboletus radicans
Tareq, Fakir Shahidullah, Hasan, Choudhury Mahmood, Rahman, M., Hanafi, Mohd Murkish Mohd, Ciacchi, Lucio Colombi, Michaelis, Monika, Harder, Tilmann, Tebben, Jan, Islam, Md. Tofazzal and Spiteller, Peter 2018. Anti-Staphylococcal Calopins from Fruiting Bodies of Caloboletus radicans. Journal of Natural Products. 81 (2), pp. 400-404.
Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition
Danquah, Cynthia A., Kakagianni, Eleftheria, Khondkar, Proma, Maitra, Arundhati, Rahman, M., Evangelopoulos, Dimitrios, McHugh, Timothy D., Stapleton, Paul, Malkinson, John, Bhakta, Sanjib and Gibbons, Simon 2018. Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition. Scientific Reports. 8 (1150).
Application of computational methods in isolation of plant secondary metabolites
Rahman, M. 2018. Application of computational methods in isolation of plant secondary metabolites. in: Sarker, Satyajit and Nahar, Lutfun (ed.) Computational Phytochemistry Elsevier.
Anti-MRSA Activity of Oxysporone and Xylitol from the Endophytic Fungus Pestalotia sp. Growing on the Sundarbans Mangrove Plant Heritiera fomes
Nurunnabi, Tauhidur Rahman, Nahar, Lutfun, Al-Majmaie, Shaymaa, Mahbubur Rahman, S. M., Sohrab, Md. Hossain, Billah, Md. Morsaline, Ismail, Fyaz M.D., Rahman, M., Sharples, George P. and Sarker, Satyajit D. 2017. Anti-MRSA Activity of Oxysporone and Xylitol from the Endophytic Fungus Pestalotia sp. Growing on the Sundarbans Mangrove Plant Heritiera fomes. Phytotherapy Research. 32 (2), pp. 348-354.
Antimicrobial resistance and synergy in herbal medicine
Mundy, Lorna, Pendry, Barbara and Rahman, M. 2016. Antimicrobial resistance and synergy in herbal medicine. Journal of Herbal Medicine. 6 (2), pp. 53-58.
Antibacterial constituents of Neohyptis paniculata
Rahman, M. and Gibbons, Simon 2015. Antibacterial constituents of Neohyptis paniculata. Fitoterapia. 105, pp. 269-272.