Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities

Article


Shaik, A. B., Bhandare, R. R., Nissankararao, S., Edis, Z., Tangirala, N. R., Shahanaaz, S. and Rahman, M. 2020. Design, Facile Synthesis and Characterization of Dichloro Substituted Chalcones and Dihydropyrazole Derivatives for Their Antifungal, Antitubercular and Antiproliferative Activities. Molecules. 25 (Art. 3188). https://doi.org/10.3390/molecules25143188
AuthorsShaik, A. B., Bhandare, R. R., Nissankararao, S., Edis, Z., Tangirala, N. R., Shahanaaz, S. and Rahman, M.
Abstract

Infectious diseases caused by fungi and mycobacteria pose an important problem for humankind. Similarly, cancer is one of the leading causes of death globally. Therefore, there is an urgent need for the development of novel agents to combat the deadly problems of cancer, tuberculosis, and also fungal infections. Hence, in the present study, we designed, synthesized, and characterized 30 compounds including 15 chalcones (2–16) and 15 dihydropyrazoles (17–31) containing dichlorophenyl moiety and also screened these compounds for their antifungal, antitubercular, and antiproliferative activities. Among these compounds, the dihydropyrazoles showed excellent antifungal and antitubercular activities whereas the chalcones exhibited promising antiproliferative activity. Among the dihydropyrazoles, compound 31 containing 2-thienyl moiety showed promising antifungal activity (MIC 5.35 µM), whereas compounds 22 and 24 containing 2,4-difluorophenyl and 4-trifluoromethyl scaffolds revealed significant antitubercular activity with the MICs of 3.96 and 3.67 µM, respectively. Compound 16 containing 2-thienyl moiety in the chalcone series showed the highest anti-proliferative activity with an IC₅₀ value of 17 ± 1 µM. The most active compounds identified through this study could be considered as starting points in the development of drugs with potential antifungal, antitubercular, and antiproliferative activities.

JournalMolecules
Journal citation25 (Art. 3188)
ISSN1420-3049
Year2020
PublisherMDPI
Publisher's version
License
File Access Level
Anyone
Supplemental file
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.3390/molecules25143188
Web address (URL)https://doi.org/10.3390/molecules25143188
Publication dates
Online13 Jul 2020
Publication process dates
Accepted11 Jul 2020
Deposited14 Jul 2020
Copyright holder© 2020 The Authors
Permalink -

https://repository.uel.ac.uk/item/8836z

Download files


Publisher's version
molecules-25-03188-1.pdf
License: CC BY 4.0
File access level: Anyone


Supplemental file
molecules-25-03188-s001-1.pdf
License: CC BY 4.0
File access level: Anyone

  • 48
    total views
  • 41
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh - an ethnopharmacological perception
Siddique, H., Pendry, B., Rashid, M. A. and Rahman, M. 2021. Medicinal plants used to treat infectious diseases in the central part and a northern district of Bangladesh - an ethnopharmacological perception. Journal of Herbal Medicine. 29 (Art. 100484). https://doi.org/10.1016/j.hermed.2021.100484
Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3’,7-Dimethyl ether
Al-Majmaie, S., Nahar, L., Rahman, M., Nath, S., Saha, P., Talukdar, A. D., Sharples, G. P. and Sarker, S. D. 2021. Anti-MRSA Constituents from Ruta chalepensis (Rutaceae) Grown in Iraq, and In Silico Studies on Two of Most Active Compounds, Chalepensin and 6-Hydroxy-rutin 3’,7-Dimethyl ether. Molecules. 26 (Art. 1114). https://doi.org/10.3390/molecules26041114
Synthesis, and biological screening of chloropyrazine conjugated benzothiazepine derivatives as potential antimicrobial, antitubercular and cytotoxic agents
Shaik, A. B., Bhandare, R. R., Nissankararao, S., Lokesh, B. V. S., Shahanaaz, S. and Rahman, M. 2020. Synthesis, and biological screening of chloropyrazine conjugated benzothiazepine derivatives as potential antimicrobial, antitubercular and cytotoxic agents. Arabian Journal of Chemistry. 14 (Art. 102915). https://doi.org/10.1016/j.arabjc.2020.102915
Antimicrobial Natural Products
Rahman, M. and Sarker, S. 2020. Antimicrobial Natural Products. in: Sarker, S. and Nahar, L. (ed.) Medicinal Natural Products: A Disease-Focused Approach, Volume 55 Academic Press. pp. 77-113
Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus
Siddique, H., Pendry, B. and Rahman, M. 2019. Terpenes from Zingiber montanum and Their Screening against Multi-Drug Resistant and Methicillin Resistant Staphylococcus aureus. Molecules. 24 (3), p. Art. 385. https://doi.org/10.3390/molecules24030385
Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus
Rahman, M., Shiu, Winnie K.P., Gibbons, Simon and Malkinson, John P. 2018. Total synthesis of acylphloroglucinols and their antibacterial activities against clinical isolates of multi-drug resistant (MDR) and methicillin-resistant strains of Staphylococcus aureus. European Journal of Medicinal Chemistry. 155, pp. 255-262. https://doi.org/10.1016/j.ejmech.2018.05.038
Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and Bioassay
Rahman, M. 2015. Antimicrobial Secondary Metabolites—Extraction, Isolation, Identification, and Bioassay. in: Evidence-Based Validation of Herbal Medicine Elsevier. pp. 495-513
Anti-Staphylococcal Calopins from Fruiting Bodies of Caloboletus radicans
Tareq, Fakir Shahidullah, Hasan, Choudhury Mahmood, Rahman, M., Hanafi, Mohd Murkish Mohd, Ciacchi, Lucio Colombi, Michaelis, Monika, Harder, Tilmann, Tebben, Jan, Islam, Md. Tofazzal and Spiteller, Peter 2018. Anti-Staphylococcal Calopins from Fruiting Bodies of Caloboletus radicans. Journal of Natural Products. 81 (2), pp. 400-404. https://doi.org/10.1021/acs.jnatprod.7b00525
Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition
Danquah, Cynthia A., Kakagianni, Eleftheria, Khondkar, Proma, Maitra, Arundhati, Rahman, M., Evangelopoulos, Dimitrios, McHugh, Timothy D., Stapleton, Paul, Malkinson, John, Bhakta, Sanjib and Gibbons, Simon 2018. Analogues of Disulfides from Allium stipitatum Demonstrate Potent Anti-tubercular Activities through Drug Efflux Pump and Biofilm Inhibition. Scientific Reports. 8 (1150). https://doi.org/10.1038/s41598-017-18948-w
Application of computational methods in isolation of plant secondary metabolites
Rahman, M. 2018. Application of computational methods in isolation of plant secondary metabolites. in: Sarker, Satyajit and Nahar, Lutfun (ed.) Computational Phytochemistry Elsevier.
Anti-MRSA Activity of Oxysporone and Xylitol from the Endophytic Fungus Pestalotia sp. Growing on the Sundarbans Mangrove Plant Heritiera fomes
Nurunnabi, Tauhidur Rahman, Nahar, Lutfun, Al-Majmaie, Shaymaa, Mahbubur Rahman, S. M., Sohrab, Md. Hossain, Billah, Md. Morsaline, Ismail, Fyaz M.D., Rahman, M., Sharples, George P. and Sarker, Satyajit D. 2017. Anti-MRSA Activity of Oxysporone and Xylitol from the Endophytic Fungus Pestalotia sp. Growing on the Sundarbans Mangrove Plant Heritiera fomes. Phytotherapy Research. 32 (2), pp. 348-354. https://doi.org/10.1002/ptr.5983
Antimicrobial resistance and synergy in herbal medicine
Mundy, Lorna, Pendry, Barbara and Rahman, M. 2016. Antimicrobial resistance and synergy in herbal medicine. Journal of Herbal Medicine. 6 (2), pp. 53-58. https://doi.org/10.1016/j.hermed.2016.03.001
Antibacterial constituents of Neohyptis paniculata
Rahman, M. and Gibbons, Simon 2015. Antibacterial constituents of Neohyptis paniculata. Fitoterapia. 105, pp. 269-272.
Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity
Xia, Hongrui, Sun, Longru, Lou, Hongxiang and Rahman, M. 2014. Conversion of salvianolic acid B into salvianolic acid A in tissues of Radix Salviae Miltiorrhizae using high temperature, high pressure and high humidity. Phytomedicine.