Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures
Article
Belov, V., Erwin-Grabner, T., Aghajani, M., Aleman, A., Amod, A. R., Basgoze, Z., Benedetti, F., Besteher, B., Bülow, R., Ching, C. R. K., Connolly, C. G., Cullen, K., Davey, C. G., Dima, D., Dols, A., Evans, J. W., Fu, C. H. Y., Saffet Gonul, A., Gotlib, I. H., Grabe, H. J., Groenewold, N., Paul Hamilton, J. Harrison, B. J., Ho. T. C., Mwangi, B., Jaworska, N., Jahanshad, N., Klimes-Dougan, B., Koopowitz, S-M., Lancaster, T., Li, M., Linden, D. E. J., MacMaster, F. P., Mehler, D. M. A., Melloni, E., Mueller, B. A., Ojha, A., Oudega, M. L., Penninx, B. W. J. H., Poletti, S., Pomarol-Clotet, E., Portella, M. J., Pozzi, E., Reneman, L. Sacchet, M. D., Sämann, P. G., Schrantee, A., Sim, K., Soares, J. C., Stein, D. J., Thomopoulos, S. I., Uyar-Demir, A., van der Wee, N. J. A., van der Werff, S. J. A., Völzke, H., Whittle, S., Wittfield, K., Wright, M. J., Wu, M-J., Yang, T. T., Zarate, C., Veltman, D. J., Schmaal, L., Thompson, P. M., Goya-Maldonado, R. and the ENIGMA Major Depressive Disorder working group 2024. Multi-site benchmark classification of major depressive disorder using machine learning on cortical and subcortical measures. Scientific Reports. 14 (Art. 1084). https://doi.org/10.1038/s41598-023-47934-8
Authors | Belov, V., Erwin-Grabner, T., Aghajani, M., Aleman, A., Amod, A. R., Basgoze, Z., Benedetti, F., Besteher, B., Bülow, R., Ching, C. R. K., Connolly, C. G., Cullen, K., Davey, C. G., Dima, D., Dols, A., Evans, J. W., Fu, C. H. Y., Saffet Gonul, A., Gotlib, I. H., Grabe, H. J., Groenewold, N., Paul Hamilton, J. Harrison, B. J., Ho. T. C., Mwangi, B., Jaworska, N., Jahanshad, N., Klimes-Dougan, B., Koopowitz, S-M., Lancaster, T., Li, M., Linden, D. E. J., MacMaster, F. P., Mehler, D. M. A., Melloni, E., Mueller, B. A., Ojha, A., Oudega, M. L., Penninx, B. W. J. H., Poletti, S., Pomarol-Clotet, E., Portella, M. J., Pozzi, E., Reneman, L. Sacchet, M. D., Sämann, P. G., Schrantee, A., Sim, K., Soares, J. C., Stein, D. J., Thomopoulos, S. I., Uyar-Demir, A., van der Wee, N. J. A., van der Werff, S. J. A., Völzke, H., Whittle, S., Wittfield, K., Wright, M. J., Wu, M-J., Yang, T. T., Zarate, C., Veltman, D. J., Schmaal, L., Thompson, P. M., Goya-Maldonado, R. and the ENIGMA Major Depressive Disorder working group |
---|---|
Abstract | Machine learning (ML) techniques have gained popularity in the neuroimaging field due to their potential for classifying neuropsychiatric disorders. However, the diagnostic predictive power of the existing algorithms has been limited by small sample sizes, lack of representativeness, data leakage, and/or overfitting. Here, we overcome these limitations with the largest multi-site sample size to date (N = 5365) to provide a generalizable ML classification benchmark of major depressive disorder (MDD) using shallow linear and non-linear models. Leveraging brain measures from standardized ENIGMA analysis pipelines in FreeSurfer, we were able to classify MDD versus healthy controls (HC) with a balanced accuracy of around 62%. But after harmonizing the data, e.g., using ComBat, the balanced accuracy dropped to approximately 52%. Accuracy results close to random chance levels were also observed in stratified groups according to age of onset, antidepressant use, number of episodes and sex. Future studies incorporating higher dimensional brain imaging/phenotype features, and/or using more advanced machine and deep learning methods may yield more encouraging prospects. |
Journal | Scientific Reports |
Journal citation | 14 (Art. 1084) |
ISSN | 2045-2322 |
Year | 2024 |
Publisher | Nature Research |
Publisher's version | License File Access Level Anyone |
Digital Object Identifier (DOI) | https://doi.org/10.1038/s41598-023-47934-8 |
Publication dates | |
Online | 11 Jan 2024 |
Publication process dates | |
Deposited | 22 Apr 2024 |
Copyright holder | © 2024, The Authors |
https://repository.uel.ac.uk/item/8x987
Download files
41
total views17
total downloads2
views this month5
downloads this month