Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach
Conference paper
Sharif, S., Theeng Tamang, M. and Fu, C. 2021. Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9582119
Authors | Sharif, S., Theeng Tamang, M. and Fu, C. |
---|---|
Type | Conference paper |
Abstract | Commuting to work is an everyday activity for many which can have a significant effect on our health. Commuting on regular basis can be a cause of chronic stress which is linked to poor mental health, high blood pressure, heart rate, and exhaustion. This research investigates the neurophysiological and psychological impact of commuting in real-time, by analyzing brain waves and applying machine learning. The participants were healthy volunteers with mean age of 30 years. Portable electroencephalogram (EEG) data were acquired as a measure of stress level. EEG data were acquired from each participant using non-invasive NeuroSky MindWave headset for 5 continuous activities during their commute to work. This approach allowed effects to be measured during and following the period of commuting. The results indicate that whether the duration of commute was low or large, when participants were in a calm or relaxed state the bio-signal alpha band exceeded beta band whereas beta band was higher than alpha band when participants were stressed due to their commute. Very promising results have been achieved with an accuracy of 97.5% using Feed-forward neural network. This work focuses on the development of an intelligent model that helps to predict the impact of commuting on participants. In addition, the result obtained from the Positive and Negative Affect Schedule also suggests that participants experience a considerable rise in stress after their commute. For modelling of cognitive and semantic processes underlying social behavior, the most of the recent research projects are still based on individuals, while our research focuses on approaches addressing groups as a complete cohort. This study recorded the experience of commuters with a special focus on the use and limitation of emerging computing technologies in telehealth sensors.
|
Year | 2021 |
Conference | 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies |
Publisher | IEEE |
Accepted author manuscript | License File Access Level Anyone |
Publication dates | |
Online | 13 Nov 2021 |
Publication process dates | |
Accepted | 02 Jul 2021 |
Deposited | 13 Aug 2021 |
Journal citation | pp. 386-391 |
Book title | 2021 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) |
ISBN | 978-1-6654-4032-5 |
978-1-6654-4033-2 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/3ICT53449.2021.9582119 |
Copyright holder | © 2021 IEEE |
Copyright information | Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
https://repository.uel.ac.uk/item/899x7
Download files
Accepted author manuscript
Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach.pdf | ||
License: All rights reserved | ||
File access level: Anyone |
355
total views261
total downloads3
views this month2
downloads this month