An Accurate Ensemble Classifier for Medical Volume Analysis: Phantom and Clinical PET Study

Article


Sharif, S., Abbod, M., Al-Bayatti, A., Amira, A., Alfakeeh, A. and Sanghera, B. 2020. An Accurate Ensemble Classifier for Medical Volume Analysis: Phantom and Clinical PET Study. IEEE Access. 8, pp. 37482-37494. https://doi.org/10.1109/ACCESS.2020.2975135
AuthorsSharif, S., Abbod, M., Al-Bayatti, A., Amira, A., Alfakeeh, A. and Sanghera, B.
Abstract

The predominant application of positron emission tomography (PET) in the field of oncology and radiotherapy and the significance of medical imaging research have led to an urgent need for effective approaches to PET volume analysis and the development of accurate and robust volume analysis techniques to support oncologists in their clinical practice, including diagnosis, arrangement of appropriate radiotherapy treatment, and evaluation of patients’ response to therapy. This paper proposes an efficient optimized ensemble classifier to tackle the problem of analysis of squamous cell carcinoma in patient PET volumes. This optimized classifier is based on an artificial neural network (ANN), fuzzy C-means (FCM), an adaptive neuro-fuzzy inference system (ANFIS), K-means, and a self-organizing map (SOM). Four ensemble classifier machines are proposed in this study. The first three are built using a voting approach, an averaging technique, and weighted averaging, respectively. The fourth, novel ensemble classifier machine is based on the combination of a modified particle swarm optimization (PSO) approach and weighted averaging. Experimental National Electrical Manufacturers Association and International Electrotechnical Commission (NEMA IEC) body phantom and clinical PET studies of participants with laryngeal squamous cell carcinoma are used for the evaluation of the proposed approach. Superior results were achieved using the new optimized ensemble classifier when compared with the results from the investigated classifiers and the non-optimized ensemble classifiers. The proposed approach identified the region of interest class (tumor) with an average accuracy of 98.11% in clinical datasets of patients with laryngeal tumors. This system supports the expertise of clinicians in PET tumor analysis.

JournalIEEE Access
Journal citation8, pp. 37482-37494
ISSN2169-3536
Year2020
PublisherIEEE
Accepted author manuscript
License
File Access Level
Repository staff only
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)https://doi.org/10.1109/ACCESS.2020.2975135
Web address (URL)https://doi.org/10.1109/ACCESS.2020.2975135
Publication dates
Online19 Feb 2020
Publication process dates
Accepted17 Feb 2020
Deposited25 Feb 2020
FunderKing Abdulaziz University
Copyright holder© 2020 The Authors
Permalink -

https://repository.uel.ac.uk/item/87v07

Download files


Publisher's version
09003249-3.pdf
License: CC BY 4.0
File access level: Anyone

  • 142
    total views
  • 94
    total downloads
  • 0
    views this month
  • 0
    downloads this month

Export as

Related outputs

Towards Tactile Sensing of the Epidural Needle into the Spinal Column
Vakulabharanam, S. S. N., Sharif, S. and Morad, S. 2023. Towards Tactile Sensing of the Epidural Needle into the Spinal Column. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Machine Learning-Based Prediction of Compressive Performance in Circular Concrete Columns Confined with FRP
Dhakal, N., Abbas, A., Ahmed, H. and Sharif, S. 2023. Machine Learning-Based Prediction of Compressive Performance in Circular Concrete Columns Confined with FRP. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing
Lebetiou, H., Morad, S., Sharif, S. and Nichols, P. 2023. Non-Invasive Ventilation Sensor Mask (NIVSM): Preliminary Design and Testing. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Neoj4 and SARMIX Model for Optimizing Product Placement and Predicting the Shortest Shopping Path
Sudharma, P., Hafidh, R., Sharif, S. and Elmedany, W. 2023. Neoj4 and SARMIX Model for Optimizing Product Placement and Predicting the Shortest Shopping Path. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Analysis of Deep Neural Networks for Military Target Classification using Synthetic Aperture Radar Images
Jacob, S., Wall, J. and Sharif, S. 2023. Analysis of Deep Neural Networks for Military Target Classification using Synthetic Aperture Radar Images. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Road Deterioration detection A Machine Learning-Based System for Automated Pavement Crack Identification and Analysis
Ganeshan, D., Sharif, S., Apeagyei, A. and Elmedany, W. 2023. Road Deterioration detection A Machine Learning-Based System for Automated Pavement Crack Identification and Analysis. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges
Barbhuiya, S. and Sharif, S. 2023. Artificial Intelligence in Concrete Mix Design: Advances, Applications and Challenges. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Customer Churn Prediction Model Using Artificial Neural Networks (ANN): A Case Study in Banking
Baby, B., Dawod, Z., Sharif, S. and Elmedany, W. 2023. Customer Churn Prediction Model Using Artificial Neural Networks (ANN): A Case Study in Banking. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Scalable Machine Learning Model for Highway CCTV Feed Real-Time Car Accident and Damage Detection
Sharif, S., Zorto, A., Brown, V. K. and Elmedany, W. 2023. Scalable Machine Learning Model for Highway CCTV Feed Real-Time Car Accident and Damage Detection. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research
Khairi, S., Sharif, S., Apeagyei, A. and Abbas, A. 2023. Artificial Intelligence Applications in Road Traffic Forecasting: A Review of Current Research. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Utilising Convolutional Neural Networks for Pavement Distress Classification and Detection
Sharif, S., Emiola, D. I., Zoto, A., Apeagyei, A. and Elmedany, W. 2023. Utilising Convolutional Neural Networks for Pavement Distress Classification and Detection. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Real-Time Customer Emotion Analysis in E-Commerce based on Social Media Data: Insights and Opportunities
Suresh, M. M., Chooramun, N. and Sharif, S. 2023. Real-Time Customer Emotion Analysis in E-Commerce based on Social Media Data: Insights and Opportunities. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Implementing a Chatbot Music Recommender System Based on User Emotion
Mathew, N,, Chooramun, N. and Sharif, S. 2023. Implementing a Chatbot Music Recommender System Based on User Emotion. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks
Guler, O., Ahmed, H., Abbas, A. and Sharif, S. 2023. Predicting Shear Capacity of RC Beams Strengthened with NSM FRP Using Neural Networks. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Machine Failure Prediction using Joint Reserve Intelligence with Feature Selection Technique
Shaheen, A., Hammad, M., Elmedany, W., Ksantini, R. and Sharif, S. 2023. Machine Failure Prediction using Joint Reserve Intelligence with Feature Selection Technique. International Journal of Computers and Applications. In Press.
An Extended Reality Solution for Mitigating the Video Fatigue of Online Meetings
Glackin, C., Cannings, N., Poobalasingam, V., Wall, J., Sharif, S. and Moniri, M. 2023. An Extended Reality Solution for Mitigating the Video Fatigue of Online Meetings. in: Jung, T. and tom Dieck, M. C. (ed.) XR-Metaverse Cases: Business Application of AR, VR, XR and Metaverse Springer. pp. 45-54
Securing IoT Devices Against Emerging Security Threats: Challenges and Mitigation Techniques
Al Kabir, M. A., Elmedany, W. and Sharif, S. 2023. Securing IoT Devices Against Emerging Security Threats: Challenges and Mitigation Techniques. Journal of Cyber Security Technology. In Press.
The Effectiveness of DKIM and SPF in Strengthening Email Security
Sami, M., Elmedany, W. and Sharif, S. 2023. The Effectiveness of DKIM and SPF in Strengthening Email Security. International Workshop on Mobile Applications (MobiApps 2023). Marrkech, Morocco 14 - 16 Aug 2023 Springer.
Employing Machine Learning Algorithms to Detect Stress with a Specific Emphasis on Commuting Methods
Sharif, S., Theeng Tamang, M., Fu, C. and Elmedany, W. 2023. Employing Machine Learning Algorithms to Detect Stress with a Specific Emphasis on Commuting Methods. International Workshop on Mobile Applications (MobiApps 2023). Marrkech, Morocco 14 - 16 Aug 2023 Springer.
An Innovative Approach Based on Machine Learning to Evaluate the Risk Factors Importance in Diagnosing Keratoconus
Zorto, A. D., Sharif, S., Wall, J., Brahma, A., Alzahrani, A. I. and Alalwan, N. 2023. An Innovative Approach Based on Machine Learning to Evaluate the Risk Factors Importance in Diagnosing Keratoconus. Informatics in Medicine Unlocked. 38, p. 101208. https://doi.org/10.1016/j.imu.2023.101208
An Effective Random Generalised Linear Model to Predict COPD
Saraireh, L., Sharif, S. and Alsallal, M. 2022. An Effective Random Generalised Linear Model to Predict COPD. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990712
Digital Data Extraction for Vehicles Forensic Investigation
Stathers, C., Muhammad, M., Fasanmade, A., Al-Bayatti, A., Morden, J. and Sharif, S. 2022. Digital Data Extraction for Vehicles Forensic Investigation. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990620
An Effective Galaxy Classification Using Fractal Analysis and Neural Network
Radhamani, P. S., Sharif, S. and Elmedany, W. 2022. An Effective Galaxy Classification Using Fractal Analysis and Neural Network. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990776
Evaluating the Stressful Commutes Using Physiological Signals and Machine Learning Techniques
Sharif, S., Theeng Tamang, M. and Fu, C. 2022. Evaluating the Stressful Commutes Using Physiological Signals and Machine Learning Techniques. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990849
Effective Machine Learning Based Techniques for Predicting Depression
Sharif, S., Zorto, A., Kareem, A. T. and Hafidh, R. 2022. Effective Machine Learning Based Techniques for Predicting Depression. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990824
Enhancement Techniques for Improving Facial Recognition Performance in Convolutional Neural Networks
Sharif, S., Olusegun, M., Zorto, A. and Elmedany, W. 2022. Enhancement Techniques for Improving Facial Recognition Performance in Convolutional Neural Networks. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990811
A Mixed Reality Approach for dealing with the Video Fatigue of Online Meetings
Wall, J., Poobalasingam, V., Sharif, S., Moniri, M., Glackin, C. and Cannings, N. 2022. A Mixed Reality Approach for dealing with the Video Fatigue of Online Meetings. 7th International XR Conference. Lisbon, Portugal 27 - 29 Apr 2022
Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach
Sharif, S., Theeng Tamang, M. and Fu, C. 2021. Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9582119
An Effective Hybrid Approach Based on Machine Learning Techniques for Auto-Translation: Japanese to English
Sharif, S., Auwal, B., Maltby, H. and Al-Bayatti, A. 2021. An Effective Hybrid Approach Based on Machine Learning Techniques for Auto-Translation: Japanese to English. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9581629
An Effective Cost-Sensitive Convolutional Neural Network for Network Traffic Classification
Sharif, S. and Moein, M. 2021. An Effective Cost-Sensitive Convolutional Neural Network for Network Traffic Classification. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9581789
Defeating the Credit Card Scams Through Machine Learning Algorithms
Bains, K., Fasanmade, A., Morden, J., Al-Bayatti, A. H., Sharif, S. and Alfakeeh, A. S. 2021. Defeating the Credit Card Scams Through Machine Learning Algorithms. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9582060
Dictionary selection for Compressed Sensing of EEG signals using sparse binary matrix and spatiotemporal sparse Bayesian learning
Dey, M., Shiraz, A., Sharif, S., Lota, J. and Demosthenous, A. 2020. Dictionary selection for Compressed Sensing of EEG signals using sparse binary matrix and spatiotemporal sparse Bayesian learning. Biomedical Physics and Engineering Express. 6 (Art. 065024). https://doi.org/10.1088/2057-1976/abc133
An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities
Hafidh, R., Sharif, S., Al-Bayatti, A. H., Alfakeeh, A. S., Alassafi, M. O. and Alqarni, M. A. 2020. An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities. Symmetry. 12 (Art. 1495). https://doi.org/10.3390/sym12091495
A Machine-Learning-Based Approach to Predict the Health Impacts of Commuting in Large Cities: Case Study of London
Raj Theeng Tamang, M., Sharif, M. S., Al-Bayatti, A. H., Alfakeeh, A. S. and Omar Alsayed, A. 2020. A Machine-Learning-Based Approach to Predict the Health Impacts of Commuting in Large Cities: Case Study of London. Symmetry. 12 (Art. 866). https://doi.org/10.3390/sym12050866
Semantic-Based Process Mining Technique for Annotation and Modelling of Domain Processes
Okoye, K., Islam, S., Naeem, U. and Sharif, S. 2020. Semantic-Based Process Mining Technique for Annotation and Modelling of Domain Processes. International Journal of Innovative Computing, Information and Control. 16 (3), pp. 899-921. https://doi.org/10.24507/ijicic.16.03.899
Positron emission tomography PET/CT harmonisation study of different clinical PET/CT scanners using commercially available software
Lowe, G., Spottiswoode, B., Declerck, J., Sullivan,, K., Sharif, S., Wong, W. and Sanghera, B. 2020. Positron emission tomography PET/CT harmonisation study of different clinical PET/CT scanners using commercially available software. BJR Open. 2 (Art. 20190035). https://doi.org/10.1259/bjro.20190035
Variance Ranking for Multi-Classed Imbalanced Datasets: A Case Study of One-Versus-All
Ebenuwa, S., Sharif, S., Al-Nemrat, A., Al-Bayatti, A. H., Alalwan, N., Alzahrani, A. I. and Alfarraj, O. 2019. Variance Ranking for Multi-Classed Imbalanced Datasets: A Case Study of One-Versus-All. Symmetry. 11 (Art. 1504). https://doi.org/10.3390/sym11121504
Policy-Based Security Management System for 5G Heterogeneous Networks
Alquhayz, H., Alalwan, N., Alzahrani, A. I., Al-Bayatti, A. H. and Sharif, S. 2019. Policy-Based Security Management System for 5G Heterogeneous Networks. Wireless Communications and Mobile Computing. 2019 (Art. 4582391). https://doi.org/10.1155/2019/4582391
A Framework for Augmented Reality Based Shared Experiences
Ali, A., Glackin, C., Cannings, N., Wall, J., Sharif, S. and Moniri, M. 2019. A Framework for Augmented Reality Based Shared Experiences. Immersive Learning Research Network - iLRN. London, UK 23 - 27 Jun 2019 Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-657-4-24
A Deep Learning Based Suggested Model to Detect Necrotising Enterocolitis in Abdominal Radiography Images
Van Druten, J., Sharif, S., Chan, S. S., Chong, C. and Abdalla, H. 2019. A Deep Learning Based Suggested Model to Detect Necrotising Enterocolitis in Abdominal Radiography Images. IEEE International Conference on Computing, Electronics & Communications Engineering 2019 (IEEE iCCECE '19) . London Metropolitan University, London, UK 22 - 23 Aug 2019 IEEE. https://doi.org/10.1109/iCCECE46942.2019.8941615
Context-Aware Driver Distraction Severity Classification using LSTM Network
Fasanmade, A., Aliyu, S., He, Y., Al-Bayatti, A. H., Sharif, S. and Alfakeeh, A. S. 2019. Context-Aware Driver Distraction Severity Classification using LSTM Network. IEEE International Conference on Computing, Electronics & Communications Engineering 2019 (IEEE iCCECE '19) . London Metropolitan University, London, UK 22 - 23 Aug 2019 IEEE. pp. 147-152 https://doi.org/10.1109/iCCECE46942.2019.8941966
Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model
Sharif, S., Al-Bayatti, A. H. and Alfakeeh, A. S. 2019. Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model. IEEE International Conference on Computing, Electronics & Communications Engineering 2019 (IEEE iCCECE '19) . London Metropolitan University, London, UK 22 - 23 Aug 2019 IEEE. https://doi.org/10.1109/iCCECE46942.2019.8941730
Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake
Hirji, H., Sullivan, K., Lasker, I., Sharif, S., Nunes, A., Shepherd, C., Wong, W. and Sanghera, B. 2019. Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake. Molecular Imaging and Radionuclide Therapy. 28 (1), pp. 1-7. https://doi.org/10.4274/mirt.galenos.2018.88528
Variance Ranking Attributes Selection Techniques for Binary Classification Problem in Imbalance Data
Ebenuwa, S., Sharif, M., Alazab, Mamoun and Al-Nemrat, A. 2019. Variance Ranking Attributes Selection Techniques for Binary Classification Problem in Imbalance Data. IEEE Access. 7, pp. 24649-24666. https://doi.org/10.1109/ACCESS.2019.2899578
Medical data analysis based on Nao robot: An automated approach towards robotic real-time interaction with human body
Sharif, M. and Alsibai, Mohammed Hayyan 2018. Medical data analysis based on Nao robot: An automated approach towards robotic real-time interaction with human body. in: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) IEEE. pp. 91-96
A Proposed Machine Learning Based Collective Disease Model to Enable Predictive Diagnostics in Necrotising Enterocolitis
van Druten, Jacqueline, Sharif, M., Khashu, Minesh and Abdalla, H. 2019. A Proposed Machine Learning Based Collective Disease Model to Enable Predictive Diagnostics in Necrotising Enterocolitis. in: Miraz, Mahdi H., Exce, Peter S., Jones, Andrew, Soomro, Safeeullah and Ali, Maaruf (ed.) Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 101-106
A Machine Learning Techniques to Detect Counterfeit Medicine Based on X-Ray Fluorescence Analyser
Alsallal, Muna, Sharif, M., Al-Ghzawi, Baydaa and al Mutoki, Sabah Mohammed Mlkat 2019. A Machine Learning Techniques to Detect Counterfeit Medicine Based on X-Ray Fluorescence Analyser. in: Miraz, Mahdi H., Excell, Peter S., Jones, Andrew, Soomro, Safeeullah and Ali, Maaruf (ed.) Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 118-122
An Innovative EPW Design Using Add-on Features to Meet Malaysian Requirements
Alsibai, Mohammed Hayyan, Sharif, M., Yaakub, Salma and Hamran, Nurul Nadia Nor 2018. An Innovative EPW Design Using Add-on Features to Meet Malaysian Requirements. in: Proceedings of the 7th IEEE International Conference on Control Systems, Computing and Engineering (ICCSCE 2017) IEEE. pp. 180-185
An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes
Sharif, M., Alsallal, Muna and Herghelegiu, Lucian 2018. An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes. IEEE International Conference on Computing, Electronics & Communications Engineering 2018 (iCCECE '18). Southend, UK 16 - 17 Aug 2018 IEEE. pp. 113-117 https://doi.org/10.1109/iCCECOME.2018.8658877
Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_34
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01054-6_96
Taskification – Gamification of Tasks
Naeem, U., Islam, S., Sharif, M., Sudakov, Sergey and Azam, Awais 2017. Taskification – Gamification of Tasks. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 631-634
SignalSense - Towards Quality Service
Islam, S., Sharif, M., Naeem, U. and Geehan, James 2017. SignalSense - Towards Quality Service. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 627-630
CrimeSafe - Helping you stay safe
Islam, S., Naeem, U., Sharif, M. and Dovnarovic, Arnold 2017. CrimeSafe - Helping you stay safe. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 642-645
The Future of Enterprise Security with Regards to Mobile Technology and Applications
Tagoe, F. T. and Sharif, M. 2017. The Future of Enterprise Security with Regards to Mobile Technology and Applications. in: Jahankhani, Hamid, Carlile, Alex, Emm, David, Hosseinian-Far, Amin, Brown, Guy, Sexton, Graham and Jamal, Arshad (ed.) Global Security, Safety and Sustainability - The Security Challenges of the Connected World. ICGS3 2017 Proceedings Springer International Publishing.
Actor-Network Theory as a Framework to Analyse Technology Acceptance Model’s External Variables: The Case of Autonomous Vehicles
Seuwou, Patrice, Banissi, Ebad, Ubakanma, George, Sharif, M. and Healey, Ann 2017. Actor-Network Theory as a Framework to Analyse Technology Acceptance Model’s External Variables: The Case of Autonomous Vehicles. in: Jahankhani, Hamid, Carlile, Alex, Emm, David, Hosseinian-Far, Amin, Brown, Guy, Sexton, Graham and Jamal, Arshad (ed.) Global Security, Safety and Sustainability - The Security Challenges of the Connected World. ICGS3 2017 Proceedings Springer International Publishing.
An efficient system for preprocessing confocal corneal images for subsequent analysis
Sharif, M., Qahwaji, Rami, Hayajneh, Sofyan, Ipson, Stanley, Alzubaidi, Rania and Brahma, Arun 2014. An efficient system for preprocessing confocal corneal images for subsequent analysis. in: 2014 14th UK Workshop on Computational Intelligence (UKCI) IEEE.
Artificial Neural Network-Based System for PET Volume Segmentation
Sharif, M., Abbod, Maysam, Amira, Abbes and Zaidi, Habib 2010. Artificial Neural Network-Based System for PET Volume Segmentation. International Journal of Biomedical Imaging. 2010 (105610). https://doi.org/10.1155/2010/105610
Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification
Sharif, M., Abbod, Maysam, Amira, Abbes and Zaidi, Habib 2012. Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification. Advances in Fuzzy Systems. 2012 (327861). https://doi.org/10.1155/2012/327861
Machine Learning Optimisation for Realistic 2D and 3D PET-CT Phantom Study
Sharif, M., Abbod, Maysam, Sonoda, Luke I. and Sanghera, Bal 2013. Machine Learning Optimisation for Realistic 2D and 3D PET-CT Phantom Study. British Journal of Applied Science & Technology. 4 (4), pp. 634-649. https://doi.org/10.9734/bjast/2014/5084
Preparation of 2D sequences of corneal images for 3D model building
Elbita, Abdulhakim, Qahwaji, Rami, Ipson, Stanley, Sharif, M. and Ghanchi, Faruque 2015. Preparation of 2D sequences of corneal images for 3D model building. Computer Methods and Programs in Biomedicine. 114 (2), pp. 194-205. https://doi.org/10.1016/j.cmpb.2014.01.009
Medical image classification based on artificial intelligence approaches: A practical study on normal and abnormal confocal corneal images
Sharif, M., Qahwaji, R., Ipson, S. and Brahma, A. 2015. Medical image classification based on artificial intelligence approaches: A practical study on normal and abnormal confocal corneal images. Applied Soft Computing. 36 (Nov.), pp. 269-282. https://doi.org/10.1016/j.asoc.2015.07.019
An efficient intelligent analysis system for confocal corneal endothelium images
Sharif, M., Qahwaji, R., Shahamatnia, E., Alzubaidi, R., Ipson, S. and Brahma, A. 2015. An efficient intelligent analysis system for confocal corneal endothelium images. Computer Methods and Programs in Biomedicine. 122 (3), pp. 421-436. https://doi.org/10.1016/j.cmpb.2015.09.003
In Vivo Confocal Microscopic Corneal Images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: A review study
Alzubaidi, Rania, Sharif, M., Qahwaji, Rami, Ipson, Stanley and Brahma, Arun 2015. In Vivo Confocal Microscopic Corneal Images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: A review study. British Journal of Ophthalmology. 100 (1), pp. 41-55. https://doi.org/10.1136/bjophthalmol-2015-306934
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96. https://doi.org/10.1016/j.procs.2017.08.297