Implementing a Chatbot Music Recommender System Based on User Emotion
Conference paper
Mathew, N,, Chooramun, N. and Sharif, S. 2023. Implementing a Chatbot Music Recommender System Based on User Emotion. 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2023 IEEE.
Authors | Mathew, N,, Chooramun, N. and Sharif, S. |
---|---|
Type | Conference paper |
Abstract | The use of chatbots has become increasingly popular in recent years, as more organisations try to improve and streamline their customer service operations. One area which has been gaining momentum is the use of chatbots for music recommendation. Such systems utilise AI technologies to deliver personalised music recommendations to users via conversational interfaces. Chatbot music recommender systems present several benefits namely; they provide a personalised and natural experience which can be engaging for the users. Moreover, the users can engage in a dialogue whereby the system can better interpret the user context and preferences. This work presents the development of a chatbot personalised music recommender system, based on Natural Language Processing (NLP) techniques, coupled with a web interface that can provide song recommendations based on the user’s emotions. |
Year | 2023 |
Conference | 3ICT 2023: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies |
Publisher | IEEE |
Accepted author manuscript | License File Access Level Anyone |
Publication process dates | |
Accepted | 14 Sep 2023 |
Deposited | 25 Sep 2023 |
Journal citation | In Press |
Copyright holder | © 2023, IEEE |
Copyright information | Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
https://repository.uel.ac.uk/item/8wq01
Download files
Accepted author manuscript
Music Recommender System-final.pdf | ||
License: All rights reserved | ||
File access level: Anyone |
51
total views14
total downloads1
views this month0
downloads this month