Dr Saeed Sharif


NameDr Saeed Sharif
Job titleAssociate Professor
Email addresssaeed3@uel.ac.uk
Research instituteArchitecture, Computing & Engineering

Research outputs

An Effective Random Generalised Linear Model to Predict COPD

Saraireh, L., Sharif, S. and Alsallal, M. 2022. An Effective Random Generalised Linear Model to Predict COPD. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2022). Bahrain, University of Bahrain 20 - 21 Nov 2022 IEEE.

Digital Data Extraction for Vehicles Forensic Investigation

Stathers, C., Muhammad, M., Fasanmade, A., Al-Bayatti, A., Morden, J. and Sharif, S. 2022. Digital Data Extraction for Vehicles Forensic Investigation. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2022). Bahrain, University of Bahrain 20 - 21 Nov 2022 IEEE.

An Effective Galaxy Classification Using Fractal Analysis and Neural Network

Radhamani, P. S., Sharif, S. and Elmedany, W. 2022. An Effective Galaxy Classification Using Fractal Analysis and Neural Network. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2022). Bahrain, University of Bahrain 20 - 21 Nov 2022 IEEE.

Evaluating the Stressful Commutes Using Physiological Signals and Machine Learning Techniques

Sharif, S., Theeng Tamang, M. and Fu, C. 2022. Evaluating the Stressful Commutes Using Physiological Signals and Machine Learning Techniques. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2022). Bahrain, University of Bahrain 20 - 21 Nov 2022 IEEE.

Effective Machine Learning Based Techniques for Predicting Depression

Sharif, S., Zorto, A., Kareem, A. T. and Hafidh, R. 2022. Effective Machine Learning Based Techniques for Predicting Depression. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2022). Bahrain, University of Bahrain 20 - 21 Nov 2022 IEEE.

Enhancement Techniques for Improving Facial Recognition Performance in Convolutional Neural Networks

Sharif, S., Olusegun, M., Zorto, A. and Elmedany, W. 2022. Enhancement Techniques for Improving Facial Recognition Performance in Convolutional Neural Networks. 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT 2022). Bahrain, University of Bahrain 20 - 21 Nov 2022 IEEE.

A Mixed Reality Approach for dealing with the Video Fatigue of Online Meetings

Wall, J., Poobalasingam, V., Sharif, S., Moniri, M., Glackin, C. and Cannings, N. 2022. A Mixed Reality Approach for dealing with the Video Fatigue of Online Meetings. 7th International XR Conference. Lisbon, Portugal 27 - 29 Apr 2022

Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach

Sharif, S., Theeng Tamang, M. and Fu, C. 2021. Predicting the Health Impacts of Commuting Using EEG Signal Based on Intelligent Approach. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9582119

An Effective Hybrid Approach Based on Machine Learning Techniques for Auto-Translation: Japanese to English

Sharif, S., Auwal, B., Maltby, H. and Al-Bayatti, A. 2021. An Effective Hybrid Approach Based on Machine Learning Techniques for Auto-Translation: Japanese to English. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9581629

An Effective Cost-Sensitive Convolutional Neural Network for Network Traffic Classification

Sharif, S. and Moein, M. 2021. An Effective Cost-Sensitive Convolutional Neural Network for Network Traffic Classification. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9581789

Defeating the Credit Card Scams Through Machine Learning Algorithms

Bains, K., Fasanmade, A., Morden, J., Al-Bayatti, A. H., Sharif, S. and Alfakeeh, A. S. 2021. Defeating the Credit Card Scams Through Machine Learning Algorithms. 3ICT 2021: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. Bahrain, University of Bahrain 29 - 30 Sep 2021 IEEE. https://doi.org/10.1109/3ICT53449.2021.9582060

Dictionary selection for Compressed Sensing of EEG signals using sparse binary matrix and spatiotemporal sparse Bayesian learning

Dey, M., Shiraz, A., Sharif, S., Lota, J. and Demosthenous, A. 2020. Dictionary selection for Compressed Sensing of EEG signals using sparse binary matrix and spatiotemporal sparse Bayesian learning. Biomedical Physics and Engineering Express. 6 (Art. 065024). https://doi.org/10.1088/2057-1976/abc133

An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities

Hafidh, R., Sharif, S., Al-Bayatti, A. H., Alfakeeh, A. S., Alassafi, M. O. and Alqarni, M. A. 2020. An Effective Knowledge-Based Modeling Approach towards a “Smart-School Care Coordination System” for Children and Young People with Special Educational Needs and Disabilities. Symmetry. 12 (Art. 1495). https://doi.org/10.3390/sym12091495

Positron emission tomography PET/CT harmonisation study of different clinical PET/CT scanners using commercially available software

Lowe, G., Spottiswoode, B., Declerck, J., Sullivan,, K., Sharif, S., Wong, W. and Sanghera, B. 2020. Positron emission tomography PET/CT harmonisation study of different clinical PET/CT scanners using commercially available software. BJR Open. 2 (Art. 20190035). https://doi.org/10.1259/bjro.20190035

Semantic-Based Process Mining Technique for Annotation and Modelling of Domain Processes

Okoye, K., Islam, S., Naeem, U. and Sharif, S. 2020. Semantic-Based Process Mining Technique for Annotation and Modelling of Domain Processes. International Journal of Innovative Computing, Information and Control. 16 (3), pp. 899-921. https://doi.org/10.24507/ijicic.16.03.899

A Machine-Learning-Based Approach to Predict the Health Impacts of Commuting in Large Cities: Case Study of London

Raj Theeng Tamang, M., Sharif, M. S., Al-Bayatti, A. H., Alfakeeh, A. S. and Omar Alsayed, A. 2020. A Machine-Learning-Based Approach to Predict the Health Impacts of Commuting in Large Cities: Case Study of London. Symmetry. 12 (Art. 866). https://doi.org/10.3390/sym12050866

An Accurate Ensemble Classifier for Medical Volume Analysis: Phantom and Clinical PET Study

Sharif, S., Abbod, M., Al-Bayatti, A., Amira, A., Alfakeeh, A. and Sanghera, B. 2020. An Accurate Ensemble Classifier for Medical Volume Analysis: Phantom and Clinical PET Study. IEEE Access. 8, pp. 37482-37494. https://doi.org/10.1109/ACCESS.2020.2975135

A Deep Learning Based Suggested Model to Detect Necrotising Enterocolitis in Abdominal Radiography Images

Van Druten, J., Sharif, S., Chan, S. S., Chong, C. and Abdalla, H. 2019. A Deep Learning Based Suggested Model to Detect Necrotising Enterocolitis in Abdominal Radiography Images. IEEE International Conference on Computing, Electronics & Communications Engineering 2019 (IEEE iCCECE '19) . London Metropolitan University, London, UK 22 - 23 Aug 2019 IEEE. https://doi.org/10.1109/iCCECE46942.2019.8941615

Context-Aware Driver Distraction Severity Classification using LSTM Network

Fasanmade, A., Aliyu, S., He, Y., Al-Bayatti, A. H., Sharif, S. and Alfakeeh, A. S. 2019. Context-Aware Driver Distraction Severity Classification using LSTM Network. IEEE International Conference on Computing, Electronics & Communications Engineering 2019 (IEEE iCCECE '19) . London Metropolitan University, London, UK 22 - 23 Aug 2019 IEEE. pp. 147-152 https://doi.org/10.1109/iCCECE46942.2019.8941966

Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model

Sharif, S., Al-Bayatti, A. H. and Alfakeeh, A. S. 2019. Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model. IEEE International Conference on Computing, Electronics & Communications Engineering 2019 (IEEE iCCECE '19) . London Metropolitan University, London, UK 22 - 23 Aug 2019 IEEE. https://doi.org/10.1109/iCCECE46942.2019.8941730

Variance Ranking for Multi-Classed Imbalanced Datasets: A Case Study of One-Versus-All

Ebenuwa, S., Sharif, S., Al-Nemrat, A., Al-Bayatti, A. H., Alalwan, N., Alzahrani, A. I. and Alfarraj, O. 2019. Variance Ranking for Multi-Classed Imbalanced Datasets: A Case Study of One-Versus-All. Symmetry. 11 (Art. 1504). https://doi.org/10.3390/sym11121504

Policy-Based Security Management System for 5G Heterogeneous Networks

Alquhayz, H., Alalwan, N., Alzahrani, A. I., Al-Bayatti, A. H. and Sharif, S. 2019. Policy-Based Security Management System for 5G Heterogeneous Networks. Wireless Communications and Mobile Computing. 2019 (Art. 4582391). https://doi.org/10.1155/2019/4582391

A Framework for Augmented Reality Based Shared Experiences

Ali, A., Glackin, C., Cannings, N., Wall, J., Sharif, S. and Moniri, M. 2019. A Framework for Augmented Reality Based Shared Experiences. Immersive Learning Research Network - iLRN. London, UK 23 - 27 Jun 2019 Technischen Universität Graz. https://doi.org/10.3217/978-3-85125-657-4-24

A Proposed Machine Learning Based Collective Disease Model to Enable Predictive Diagnostics in Necrotising Enterocolitis

van Druten, Jacqueline, Sharif, M., Khashu, Minesh and Abdalla, H. 2019. A Proposed Machine Learning Based Collective Disease Model to Enable Predictive Diagnostics in Necrotising Enterocolitis. in: Miraz, Mahdi H., Exce, Peter S., Jones, Andrew, Soomro, Safeeullah and Ali, Maaruf (ed.) Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 101-106

A Machine Learning Techniques to Detect Counterfeit Medicine Based on X-Ray Fluorescence Analyser

Alsallal, Muna, Sharif, M., Al-Ghzawi, Baydaa and al Mutoki, Sabah Mohammed Mlkat 2019. A Machine Learning Techniques to Detect Counterfeit Medicine Based on X-Ray Fluorescence Analyser. in: Miraz, Mahdi H., Excell, Peter S., Jones, Andrew, Soomro, Safeeullah and Ali, Maaruf (ed.) Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 118-122

An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes

Sharif, M., Alsallal, Muna and Herghelegiu, Lucian 2018. An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes. IEEE International Conference on Computing, Electronics & Communications Engineering 2018 (iCCECE '18). Southend, UK 16 - 17 Aug 2018 IEEE. pp. 113-117 https://doi.org/10.1109/iCCECOME.2018.8658877

Variance Ranking Attributes Selection Techniques for Binary Classification Problem in Imbalance Data

Ebenuwa, S., Sharif, M., Alazab, Mamoun and Al-Nemrat, A. 2019. Variance Ranking Attributes Selection Techniques for Binary Classification Problem in Imbalance Data. IEEE Access. 7, pp. 24649-24666. https://doi.org/10.1109/ACCESS.2019.2899578

Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake

Hirji, H., Sullivan, K., Lasker, I., Sharif, S., Nunes, A., Shepherd, C., Wong, W. and Sanghera, B. 2019. Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake. Molecular Imaging and Radionuclide Therapy. 28 (1), pp. 1-7. https://doi.org/10.4274/mirt.galenos.2018.88528

The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain

Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01054-6_96

Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network

Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems Conference (IntelliSys) 2018. London, UK 06 - 07 Sep 2018 Springer, Cham. https://doi.org/10.1007/978-3-030-01057-7_34

Medical data analysis based on Nao robot: An automated approach towards robotic real-time interaction with human body

Sharif, M. and Alsibai, Mohammed Hayyan 2018. Medical data analysis based on Nao robot: An automated approach towards robotic real-time interaction with human body. in: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) IEEE. pp. 91-96

An Innovative EPW Design Using Add-on Features to Meet Malaysian Requirements

Alsibai, Mohammed Hayyan, Sharif, M., Yaakub, Salma and Hamran, Nurul Nadia Nor 2018. An Innovative EPW Design Using Add-on Features to Meet Malaysian Requirements. in: Proceedings of the 7th IEEE International Conference on Control Systems, Computing and Engineering (ICCSCE 2017) IEEE. pp. 180-185

A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing

Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96. https://doi.org/10.1016/j.procs.2017.08.297

Taskification – Gamification of Tasks

Naeem, U., Islam, S., Sharif, M., Sudakov, Sergey and Azam, Awais 2017. Taskification – Gamification of Tasks. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 631-634

SignalSense - Towards Quality Service

Islam, S., Sharif, M., Naeem, U. and Geehan, James 2017. SignalSense - Towards Quality Service. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 627-630

CrimeSafe - Helping you stay safe

Islam, S., Naeem, U., Sharif, M. and Dovnarovic, Arnold 2017. CrimeSafe - Helping you stay safe. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 642-645

Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification

Sharif, M., Abbod, Maysam, Amira, Abbes and Zaidi, Habib 2012. Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification. Advances in Fuzzy Systems. 2012 (327861). https://doi.org/10.1155/2012/327861

The Future of Enterprise Security with Regards to Mobile Technology and Applications

Tagoe, F. T. and Sharif, M. 2017. The Future of Enterprise Security with Regards to Mobile Technology and Applications. in: Jahankhani, Hamid, Carlile, Alex, Emm, David, Hosseinian-Far, Amin, Brown, Guy, Sexton, Graham and Jamal, Arshad (ed.) Global Security, Safety and Sustainability - The Security Challenges of the Connected World. ICGS3 2017 Proceedings Springer International Publishing.

Actor-Network Theory as a Framework to Analyse Technology Acceptance Model’s External Variables: The Case of Autonomous Vehicles

Seuwou, Patrice, Banissi, Ebad, Ubakanma, George, Sharif, M. and Healey, Ann 2017. Actor-Network Theory as a Framework to Analyse Technology Acceptance Model’s External Variables: The Case of Autonomous Vehicles. in: Jahankhani, Hamid, Carlile, Alex, Emm, David, Hosseinian-Far, Amin, Brown, Guy, Sexton, Graham and Jamal, Arshad (ed.) Global Security, Safety and Sustainability - The Security Challenges of the Connected World. ICGS3 2017 Proceedings Springer International Publishing.

In Vivo Confocal Microscopic Corneal Images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: A review study

Alzubaidi, Rania, Sharif, M., Qahwaji, Rami, Ipson, Stanley and Brahma, Arun 2015. In Vivo Confocal Microscopic Corneal Images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: A review study. British Journal of Ophthalmology. 100 (1), pp. 41-55. https://doi.org/10.1136/bjophthalmol-2015-306934

An efficient intelligent analysis system for confocal corneal endothelium images

Sharif, M., Qahwaji, R., Shahamatnia, E., Alzubaidi, R., Ipson, S. and Brahma, A. 2015. An efficient intelligent analysis system for confocal corneal endothelium images. Computer Methods and Programs in Biomedicine. 122 (3), pp. 421-436. https://doi.org/10.1016/j.cmpb.2015.09.003

Medical image classification based on artificial intelligence approaches: A practical study on normal and abnormal confocal corneal images

Sharif, M., Qahwaji, R., Ipson, S. and Brahma, A. 2015. Medical image classification based on artificial intelligence approaches: A practical study on normal and abnormal confocal corneal images. Applied Soft Computing. 36 (Nov.), pp. 269-282. https://doi.org/10.1016/j.asoc.2015.07.019

Preparation of 2D sequences of corneal images for 3D model building

Elbita, Abdulhakim, Qahwaji, Rami, Ipson, Stanley, Sharif, M. and Ghanchi, Faruque 2015. Preparation of 2D sequences of corneal images for 3D model building. Computer Methods and Programs in Biomedicine. 114 (2), pp. 194-205. https://doi.org/10.1016/j.cmpb.2014.01.009

An efficient system for preprocessing confocal corneal images for subsequent analysis

Sharif, M., Qahwaji, Rami, Hayajneh, Sofyan, Ipson, Stanley, Alzubaidi, Rania and Brahma, Arun 2014. An efficient system for preprocessing confocal corneal images for subsequent analysis. in: 2014 14th UK Workshop on Computational Intelligence (UKCI) IEEE.

Machine Learning Optimisation for Realistic 2D and 3D PET-CT Phantom Study

Sharif, M., Abbod, Maysam, Sonoda, Luke I. and Sanghera, Bal 2013. Machine Learning Optimisation for Realistic 2D and 3D PET-CT Phantom Study. British Journal of Applied Science & Technology. 4 (4), pp. 634-649. https://doi.org/10.9734/bjast/2014/5084

Artificial Neural Network-Based System for PET Volume Segmentation

Sharif, M., Abbod, Maysam, Amira, Abbes and Zaidi, Habib 2010. Artificial Neural Network-Based System for PET Volume Segmentation. International Journal of Biomedical Imaging. 2010 (105610). https://doi.org/10.1155/2010/105610
  • 5743
    total views of outputs
  • 5931
    total downloads of outputs
  • 376
    views of outputs this month
  • 208
    downloads of outputs this month