Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake

Article


Hirji, H., Sullivan, K., Lasker, I., Sharif, S., Nunes, A., Shepherd, C., Wong, W. and Sanghera, B. 2019. Effect of PET Image Reconstruction Techniques on Unexpected Aorta Uptake. Molecular Imaging and Radionuclide Therapy. 28 (1), pp. 1-7.
AuthorsHirji, H., Sullivan, K., Lasker, I., Sharif, S., Nunes, A., Shepherd, C., Wong, W. and Sanghera, B.
Abstract

Objectives:

To determine if unexpected aorta uptake seen in some patients is influenced by popular modern reconstruction algorithms using semi-quantitative and qualitative analysis.
Methods:

Twenty-five consecutive patients without suspected vascular disease were selected for 18F-FDG positron emission tomography/ computed tomography (PET/CT) scanning and images of the aorta were created using iterative reconstruction (IT), IT + time of flight (TOF), IT + TOF + point spread function correction (referred collectively as UHD) with and without metal artefact reduction (MAR) algorithms. An experienced radiologist created aorta and blood pool (BP) regions of interests then copied these to all reconstructions for accurate positioning before recording target aorta standardized-uptake-values (SUVₘₐₓ) and background BP SUVₘₑₐₙ. Furthermore, target-to-background ratio (TBRₘₐₓ) was defined by aorta SUVₘₐₓ-to-BP SUVₘₑₐₙ ratio for more analysis.
Results:

For aorta SUVₘₐₓ with IT, IT + TOF, UHD, UHD + MAR reconstructions the mean ± standard deviation recorded were 2.15±0.43, 2.25±0.51, 2.25±0.45 and 2.09±0.4, respectively. Values for BP SUVₘₑₐₙ were 1.61±0.31, 1.58±0.28, 1.58±0.28 and 1.47±0.25, respectively. Likewise, for TBRₘₐₓ these were 1.35±0.19, 1.43±0.21, 1.43±0.19, 1.43±0.18, respectively. ANOVA analysis revealed no significant differences for aorta SUVₘₐₓ (F(0.86) p=0.46), BP SUVₘₑₐₙ (F(1.22) p=0.31) or TBRₘₐₓ (F(0.99) p=0.4). However, the qualitative visual analysis revealed significant differences between IT + TOF with UHD (p=0.02) or UHD + MAR (p=0.02).
Conclusion:

Reconstruction algorithm effect on aorta SUVₘₐₓ or BP SUVₘₑₐₙ or TBRₘₐₓ was not statistically significant. However, qualitative visual analysis showed significant differences between IT + TOF as compared with UHD or UHD + MAR reconstructions. Harmonization of techniques with a larger patient cohort is recommended in future clinical trials.

JournalMolecular Imaging and Radionuclide Therapy
Journal citation28 (1), pp. 1-7
ISSN2146-1414
Year2019
PublisherGalenos Yayınevi
Publisher's version
License
File Access Level
Anyone
Digital Object Identifier (DOI)doi:10.4274/mirt.galenos.2018.88528
Web address (URL)https://doi.org/10.4274/mirt.galenos.2018.88528
Publication dates
OnlineFeb 2019
Publication process dates
Accepted14 Sep 2018
Deposited17 Jun 2019
Copyright holder© 2019 Turkish Society of Nuclear Medicine Molecular Imaging and Radionuclide Therapy
Permalink -

https://repository.uel.ac.uk/item/86v75

  • 10
    total views
  • 20
    total downloads
  • 5
    views this month
  • 4
    downloads this month

Related outputs

A Deep Learning Based Suggested Model to Detect Necrotising Enterocolitis in Abdominal Radiography Images
Van Druten, J., Sharif, S., Chan, S. S., Chong, C. and Abdalla, H. 2019. A Deep Learning Based Suggested Model to Detect Necrotising Enterocolitis in Abdominal Radiography Images. in: Proceedings: 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE.
Context-Aware Driver Distraction Severity Classification using LSTM Network
Fasanmade, A., Aliyu, S., He, Y., Al-Bayatti, A. H., Sharif, S. and Alfakeeh, A. S. 2019. Context-Aware Driver Distraction Severity Classification using LSTM Network. in: Proceedings: 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE.
Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model
Sharif, S., Al-Bayatti, A. H. and Alfakeeh, A. S. 2019. Predicting the Standard and Deviant Patterns In EEG Signals Based On Deep Learning Model. in: Proceedings: 2019 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE.
Variance Ranking Attributes Selection Techniques for Binary Classification Problem in Imbalance Data
Ebenuwa, S., Sharif, M., Alazab, Mamoun and Al-Nemrat, A. 2019. Variance Ranking Attributes Selection Techniques for Binary Classification Problem in Imbalance Data. IEEE Access. 7, pp. 24649-24666.
Medical data analysis based on Nao robot: An automated approach towards robotic real-time interaction with human body
Sharif, M. and Alsibai, Mohammed Hayyan 2018. Medical data analysis based on Nao robot: An automated approach towards robotic real-time interaction with human body. in: 2017 7th IEEE International Conference on Control System, Computing and Engineering (ICCSCE) IEEE. pp. 91-96
A Proposed Machine Learning Based Collective Disease Model to Enable Predictive Diagnostics in Necrotising Enterocolitis
van Druten, Jacqueline, Sharif, M., Khashu, Minesh and Abdalla, H. 2019. A Proposed Machine Learning Based Collective Disease Model to Enable Predictive Diagnostics in Necrotising Enterocolitis. in: Miraz, Mahdi H., Exce, Peter S., Jones, Andrew, Soomro, Safeeullah and Ali, Maaruf (ed.) Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 101-106
A Machine Learning Techniques to Detect Counterfeit Medicine Based on X-Ray Fluorescence Analyser
Alsallal, Muna, Sharif, M., Al-Ghzawi, Baydaa and al Mutoki, Sabah Mohammed Mlkat 2019. A Machine Learning Techniques to Detect Counterfeit Medicine Based on X-Ray Fluorescence Analyser. in: Miraz, Mahdi H., Excell, Peter S., Jones, Andrew, Soomro, Safeeullah and Ali, Maaruf (ed.) Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 118-122
An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes
Sharif, M., Alsallal, Muna and Herghelegiu, Lucian 2018. An Effective TeleHealth Assistive System to Support Senior Citizen at Home or Care-Homes. in: Proceedings 2018 International Conference on Computing, Electronics & Communications Engineering (iCCECE) IEEE. pp. 113-117
Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network
Sharif, M., Naeem, U., Islam, S. and Karami, A. 2018. Functional Connectivity Evaluation for Infant EEG Signals based on Artificial Neural Network. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 2 Springer, Cham.
The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain
Okoye, Kingsley, Islam, S., Naeem, U., Sharif, M., Azam, Muhammad Awais and Karami, A. 2018. The Application of a Semantic-Based Process Mining Framework on a Learning Process Domain. in: Arai, Kohei, Kapoor, Supriya and Bhatia, Rahul (ed.) Intelligent Systems and Applications: Proceedings of the 2018 Intelligent Systems Conference (IntelliSys) Volume 1 Springer, Cham.
An Innovative EPW Design Using Add-on Features to Meet Malaysian Requirements
Alsibai, Mohammed Hayyan, Sharif, M., Yaakub, Salma and Hamran, Nurul Nadia Nor 2018. An Innovative EPW Design Using Add-on Features to Meet Malaysian Requirements. in: Proceedings of the 7th IEEE International Conference on Control Systems, Computing and Engineering (ICCSCE 2017) Institute of Electrical and Electronics Engineers (IEEE). pp. 180-185
Taskification – Gamification of Tasks
Naeem, U., Islam, S., Sharif, M., Sudakov, Sergey and Azam, Awais 2017. Taskification – Gamification of Tasks. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 631-634
SignalSense - Towards Quality Service
Islam, S., Sharif, M., Naeem, U. and Geehan, James 2017. SignalSense - Towards Quality Service. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 627-630
CrimeSafe - Helping you stay safe
Islam, S., Naeem, U., Sharif, M. and Dovnarovic, Arnold 2017. CrimeSafe - Helping you stay safe. in: Proceedings of the 2017 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2017 ACM International Symposium on Wearable Computers ACM. pp. 642-645
A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing
Pizzamiglio, S., Naeem, U., ur Réhman, Shafiq, Sharif, M., Abdalla, H. and Turner, D. 2017. A Mutlimodal Approach to Measure the Levels Distraction of Pedestrians using Mobile Sensing. Procedia Computer Science. 113, pp. 89-96.
The Future of Enterprise Security with Regards to Mobile Technology and Applications
Tagoe, F. T. and Sharif, M. 2017. The Future of Enterprise Security with Regards to Mobile Technology and Applications. in: Jahankhani, Hamid, Carlile, Alex, Emm, David, Hosseinian-Far, Amin, Brown, Guy, Sexton, Graham and Jamal, Arshad (ed.) Global Security, Safety and Sustainability - The Security Challenges of the Connected World. ICGS3 2017 Proceedings Springer International Publishing.
Actor-Network Theory as a Framework to Analyse Technology Acceptance Model’s External Variables: The Case of Autonomous Vehicles
Seuwou, Patrice, Banissi, Ebad, Ubakanma, George, Sharif, M. and Healey, Ann 2017. Actor-Network Theory as a Framework to Analyse Technology Acceptance Model’s External Variables: The Case of Autonomous Vehicles. in: Jahankhani, Hamid, Carlile, Alex, Emm, David, Hosseinian-Far, Amin, Brown, Guy, Sexton, Graham and Jamal, Arshad (ed.) Global Security, Safety and Sustainability - The Security Challenges of the Connected World. ICGS3 2017 Proceedings Springer International Publishing.
An efficient system for preprocessing confocal corneal images for subsequent analysis
Sharif, M., Qahwaji, Rami, Hayajneh, Sofyan, Ipson, Stanley, Alzubaidi, Rania and Brahma, Arun 2014. An efficient system for preprocessing confocal corneal images for subsequent analysis. in: 2014 14th UK Workshop on Computational Intelligence (UKCI) IEEE.
Artificial Neural Network-Based System for PET Volume Segmentation
Sharif, M., Abbod, Maysam, Amira, Abbes and Zaidi, Habib 2010. Artificial Neural Network-Based System for PET Volume Segmentation. International Journal of Biomedical Imaging. 2010 (105610).
Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification
Sharif, M., Abbod, Maysam, Amira, Abbes and Zaidi, Habib 2012. Artificial Neural Network-Statistical Approach for PET Volume Analysis and Classification. Advances in Fuzzy Systems. 2012 (327861).
Machine Learning Optimisation for Realistic 2D and 3D PET-CT Phantom Study
Sharif, M., Abbod, Maysam, Sonoda, Luke I. and Sanghera, Bal 2013. Machine Learning Optimisation for Realistic 2D and 3D PET-CT Phantom Study. British Journal of Applied Science & Technology. 4 (4), pp. 634-649.
Preparation of 2D sequences of corneal images for 3D model building
Elbita, Abdulhakim, Qahwaji, Rami, Ipson, Stanley, Sharif, M. and Ghanchi, Faruque 2015. Preparation of 2D sequences of corneal images for 3D model building. Computer Methods and Programs in Biomedicine. 114 (2), pp. 194-205.
Medical image classification based on artificial intelligence approaches: A practical study on normal and abnormal confocal corneal images
Sharif, M., Qahwaji, R., Ipson, S. and Brahma, A. 2015. Medical image classification based on artificial intelligence approaches: A practical study on normal and abnormal confocal corneal images. Applied Soft Computing. 36 (Nov.), pp. 269-282.
An efficient intelligent analysis system for confocal corneal endothelium images
Sharif, M., Qahwaji, R., Shahamatnia, E., Alzubaidi, R., Ipson, S. and Brahma, A. 2015. An efficient intelligent analysis system for confocal corneal endothelium images. Computer Methods and Programs in Biomedicine. 122 (3), pp. 421-436.
In Vivo Confocal Microscopic Corneal Images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: A review study
Alzubaidi, Rania, Sharif, M., Qahwaji, Rami, Ipson, Stanley and Brahma, Arun 2015. In Vivo Confocal Microscopic Corneal Images in health and disease with an emphasis on extracting features and visual signatures for corneal diseases: A review study. British Journal of Ophthalmology. 100 (1), pp. 41-55.