Evaluating the Stressful Commutes Using Physiological Signals and Machine Learning Techniques
Conference paper
Sharif, S., Theeng Tamang, M. and Fu, C. 2022. Evaluating the Stressful Commutes Using Physiological Signals and Machine Learning Techniques. 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies. University of Bahrain, Bahrain 20 - 21 Nov 2022 IEEE. https://doi.org/10.1109/3ICT56508.2022.9990849
Authors | Sharif, S., Theeng Tamang, M. and Fu, C. |
---|---|
Type | Conference paper |
Abstract | Stress can be described as an alteration in our body that can cause strain emotionally, physically, or psychologically. It is a reaction from our body to something that demands attention or exertion. It can be caused by various reasons depending on the physical or mental activity of the body. Commuting on a regular basis also acts as a source of stress. This research aims to explore the physiological effects of the commute with an application of a machine-learning algorithm. The data used in this research is collected from 45 healthy participants who commute to work on a regular basis. A multimodal dataset containing medical data like biosignals (heart rate, blood pressure, and EEG signal) plus responses obtained from the questionnaire PANAS. Evaluation is based on the performance metrics that include confusion matrix, ROC/AUC, and classification accuracy of the model. In this research, several machine learning algorithms are applied to design a model which can predict the effect of a commute. The results obtained from this research suggest that whether the interval of commute was small or large, there was a significant rise in stress levels including the bio-signals (electroencephalogram, blood pressure and heart rate) after the commute. The results obtained from the employed machine learning algorithms predict that heart rate difference before and after commute will correlate with EEG signals in participants who have self-reported to be stress after the commute. The random forest algorithm gave a very promising result with an accuracy of 91%, while the KNN and the SVM showed the accuracy of 78% and 80% respectively. |
Year | 2022 |
Conference | 3ICT 2022: International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies |
Publisher | IEEE |
Accepted author manuscript | License File Access Level Anyone |
Publication dates | |
Online | 30 Dec 2022 |
Publication process dates | |
Accepted | Aug 2022 |
Deposited | 12 Sep 2022 |
Journal citation | pp. 175-180 |
ISSN | 2770-7466 |
Book title | 2022 International Conference on Innovation and Intelligence for Informatics, Computing, and Technologies (3ICT) |
ISBN | 9781665451932 |
9781665451949 | |
Digital Object Identifier (DOI) | https://doi.org/10.1109/3ICT56508.2022.9990849 |
Web address (URL) of conference proceedings | https://ieeexplore.ieee.org/xpl/conhome/9989532/proceeding |
Copyright holder | © 2022, IEEE |
Copyright information | Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works. |
https://repository.uel.ac.uk/item/8v0qq
Download files
276
total views115
total downloads4
views this month0
downloads this month